共查询到20条相似文献,搜索用时 31 毫秒
1.
Hongpeng YIN ;Jinxing LI ;Yi CHAI ;Simon X. YANG 《Frontiers of Computer Science in China》2014,(6):893-904
The compressed sensing (CS) theory makes sample rate relate to signal structure and content. CS samples and compresses the signal with far below Nyquist sampling frequency simultaneously. However, CS only considers the intra-signal correlations, without taking the correlations of the multi-signals into account. Distributed compressed sensing (DCS) is an extension of CS that takes advantage of both the inter- and intra-signal correlations, which is wildly used as a powerful method for the multi-signals sensing and compression in many fields. In this paper, the characteristics and related works of DCS are reviewed. The framework of DCS is introduced. As DCS's main portions, sparse representation, measurement matrix selection, and joint reconstruction are classified and summarized. The applications of DCS are also categorized and discussed. Finally, the conclusion remarks and the further research works are provided. 相似文献
2.
3.
压缩感知技术,特别是语音压缩感知技术逐渐成为信号处理领域的研究热点。当前的语音压缩感知关键技术主要包括适合语音信号的稀疏分解矩阵构造,观测矩阵的选择和重构算法的设计。稀疏分解矩阵的重要代表是正交基、基于语音特性的线性预测矩阵和过完备字典。观测矩阵方面主要采用随机观测矩阵分析语音压缩感知性能;重构算法方面重点研究当观测序列或语音信号本身含有噪声时鲁棒的语音压缩感知重构算法。本文对上述语音压缩感知的3大关键技术进行了介绍和对比分析,并对语音压缩感知的应用进行了总结,最后对未来可能的研究热点进行了展望。 相似文献
4.
压缩感知(CS)是近年来提出的一种针对稀疏信号处理的新方法,其核心是将压缩与采样同步进行,由于信号的投影测量数据远小于传统方法的数据量,突破了香农采样定理瓶颈从而使得高分辨率信号采集成为可能。NIOSⅡ嵌入式处理器是ALTERA公司推出的第二代片上可编程软核处理器,它的灵活性与可裁减性使其适用于终端数据处理。正交匹配追踪(OMP)算法是压缩感知理论中用于重构的经典算法,针对该算法对图像重构计算时需要大量存储空间并耗时巨大的问题,文中提出了图像分块压缩的改进方案;针对OMP算法重构时图像列与列之间数据相关性被割裂的现象,提出了图像均衡行列值的改进算法。实际系统运行结果显示两种改进方案均取得了良好效果。 相似文献
5.
6.
文中提出了一种基于子空间解析字典学习和观测矩阵优化的图像压缩感知算法.该算法根据图像的局部方向特征,将整个图像空间分成多个子空间,并且采用几何共轭梯度算法分别在各个子空间学习解析字典,以实现对不同子空间图像块的最优稀疏表示.在图像重构过程中,首先在所有的子空间对每个图像块分别进行估计,然后根据稀疏表示最小误差准则获得每个图像块的最优估计.为了进一步提高图像重构质量,文中通过对不同子空间的图像块进行线性判别分析获得优化观测矩阵.实验表明文中算法可以实现高质量的压缩感知图像重构. 相似文献
7.
为提高可穿戴多传感数据远程联合重构性能,提出了一种基于分布式压缩感知的可穿戴多传感加速度数据联合重构新方法。该方法首先对可穿戴多传感原始数据压缩编码,将数据融合传送至远端服务器;然后,基于可穿戴传感数据的时空相关性,构建块稀疏贝叶斯学习联合重构算法,实现压缩数据解码,准确重构各传感原始数据;最后,新方法对美国加州伯克利大学可穿戴多传感运动数据进行分析。实验结果表明,对不同编码采样率,文章所提方法重构性能明显优于传统的算法,并且能够准确解码压缩数据,有望在远程医疗环境下推广应用。 相似文献
8.
探索压缩感知理论在语音信号重构中的应用,研究测量矩阵选取对语音信号重构效果的影响.改进传统随机,托普利兹,循环等测量矩阵,尝试将稀疏对角矩阵应用于测量矩阵完成对语音信号的非相干测量.在语音信号上进行实验,分别采用稀疏对角结构测量矩阵和传统测量矩阵,对比它们使用StOMP算法重构语音信号的效果.实验结果表明,采用改进的稀疏对角循环矩阵重构语音信号,较传统矩阵重构的精确度有明显提高,运行时间也有明显缩短. 相似文献
9.
压缩感知理论(Compressed sensing,CS)通过少量的线性测量值感知信号的原始结构,并通过求解最优化问题精确地重构原信号.该理论减少了数字图像及视频 获取时的存储及传输代价,也为后续的图像处理及识别的研究提供了新的契机,促进了理论和工程应用的结合. 阐述了CS的基本原理,综述了其关键技术稀疏变换、观测矩阵 设计、重构算法的一系列最新理论成果和发展,深入分析和比较了CS理论应用到图像处理领域的研究和发展状况,总结了其中存在的问题,并对未来的应用前景进行了展望. 相似文献
10.
压缩传感在无线视频监控中的应用研究* 总被引:1,自引:0,他引:1
图像采集数据量大是制约视频监控系统向无线化方向发展的主要因素,提出利用压缩传感进行视频图像的采样,为无线视频监控带来一种新的应用研究。为了减少图像稀疏分解过程的计算量和存储量,在匹配追踪算法的基础上,引入量子遗传算法,实现快速的图像稀疏表示。以Fourier矩阵作为压缩传感的测量矩阵,能有效减少测量数据量,并提高重构图像的质量。仿真实验证明,采用压缩传感所得到的测量数据量远小于传统采样方法所获的数据量,突破了传统信号采样的瓶颈,提高了采样效率,最终获取的压缩测量值能够很好地恢复为监控场景。 相似文献
11.
压缩感知基本理论:回顾与展望 总被引:4,自引:4,他引:4
随着信息社会的迅速发展,人们对数字信息的需求越来越大。同时,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。如何在保持信号信息的同时尽可能地减少信号的采样数量?Candès在2006年的国际数学家大会上介绍了一种称为压缩感知的新颖信号采样理论,指出:只要远少于传统Nyquist采样定理所要求的采样数即可精确或高概率精确重建原始信号。围绕压缩感知的稀疏字典设计、测量矩阵设计、重建算法设计这3个核心问题,对其基本理论和主要方法进行了系统阐述,同时指出了压缩感知有待解决的若干理论问题与关键技术。 相似文献
12.
信号分解的稀疏程度决定了压缩感知重构信号的精度,针对标准正交基稀疏程度的不足,提出了基于混合字典的压缩感知图像分解和重构方法。构建匹配图像边缘和纹理的二维Gabor字典,将图像在离散余弦字典与建立的二维Gabor字典上进行混合稀疏分解,得到图像的光滑成分、边缘成分和纹理成分。对得到的稀疏成分进行CS观测,通过求解一个优化问题重构图像。实验结果表明,构造的混合字典能够对图像进行更加稀疏的表示,在相同的采样率下,图像的重构质量优于标准正交基分解。 相似文献
13.
韦穗 《中国图象图形学报》2009,14(6):1064-1069
结合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法.该方法将CS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型中的未知权值参数;利用SBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数;最大化超参数的边缘对数似然函数求得权值参数的最优估计即待重建图像.该方法同时还给出了权值估计的后验概率密度和误差条,从而获得权值最优值的不确定性测量.实验结果表明,SBL方法可以获得精确重建,并且在相同相对重建误差的条件下,比基追踪(BP)方法需要更少的重建时间,比正交匹配追踪(OMP)需要更少的测量次数. 相似文献
14.
15.
针对传统纹理分类方法计算复杂的问题,本文基于bag-of-words模型提出了一种简单、新奇的纹理分类方法。在特征提取阶段,使用NSCT滤波器对局部图像块进行映射投影,然后通过观测矩阵提取其随机测量值特征;在纹理分类阶段,直接将随机特征嵌入到bag-of-words环境,并且直接在压缩域内进行学习和分类。利用纹理图像的稀疏性,本文提出的特征提取方法简单,并且在性能和复杂度上都优于传统特征提取方法。最后使用CUReT数据库进行数值试验,并与patch、patch-MRF、MR8、LBP四种最经典的方法进行比对,本文方法在分类精度以及实时性上有重要的改进。 相似文献
16.
测量矩阵的构造是压缩感知(CS)中重要的研究内容之一.利用混沌系统伪随机性、遍历性的特点,提出了一种基于帐篷混沌序列构造确定性稀疏随机矩阵的方法.对混沌系统生成的确定性序列进行了间隔采样,采样后的序列满足统计独立性,然后通过符号函数映射,生成了具有稀疏性质的伪随机序列,进而构造出混沌稀疏测量矩阵.仿真实验表明:该方法构造出的混沌稀疏测量矩阵与高斯随机矩阵、稀疏随机矩阵及Bernoulli随机矩阵相比,具有类似的重构性能.混沌系统参数与初值固定时,构造的混沌稀疏测量矩阵是确定的,计算复杂度小且硬件上容易实现. 相似文献
17.
针对现有的超分辨率重建算法只考虑图像块的灰度信息,而忽略了纹理信息,并且大多数非局部方法在强调非局部信息的同时,没有考虑局部信息的问题,提出一种结合压缩感知与非局部信息的图像超分辨率重建算法。首先,根据图像块的结构特征计算像素之间的相似性,同时考虑了图像块的灰度信息和纹理信息;然后,合并图像的局部和非局部信息来估计相似像素的权重,构造结合局部和非局部信息的正则项;最后,将图像的非局部信息引入到压缩感知框架中,通过迭代收缩算法求解稀疏表示系数。实验结果表明,所提算法与现有的基于学习的超分辨率算法相比,重建图像的峰值信噪比和结构相似度取值更高,并且在恢复图像纹理细节的同时有效抑制了噪声。 相似文献
18.
19.
为了有效应对新型电力系统中数据量激增、数据采集难度大、采集成本高、通信传输拥挤等问题,进一步提高电力数据的分析应用能力,本文以配电网为具体研究场景,提出基于压缩感知理论的智能配电网数据采集方案并搭建了相应的模型。针对智能配电网的特点,本文从常用的稀疏基与满足约束等距性条件的测量矩阵中分别选取了离散W变换中的特定稀疏基与稀疏随机矩阵作为所提数据采集方案的稀疏基与测量矩阵,并通过分析与仿真得到了适用于该方案的信号长度与压缩测量维数的取值范围。此外,本文还设计了一种基于频率预估的压缩感知重构算法,并在仿真实验中证明该算法相较于正交匹配追踪算法、压缩采样匹配追踪算法、基于光滑L0范数的压缩感知重构算法、基于光滑L0范数和修正牛顿法的压缩感知重构算法这四类算法,在重构精度上有明显的提升,并且基于频率预估的压缩感知重构算法还具有迭代速度快、重构耗时短以及扩展性强的优点。 相似文献