首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007, MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能.  相似文献   

2.
现有基于深度学习的缺陷检测方法通常采用强监督学习策略,检测效果依赖于样本的数量和标注的质量.针对上述问题,提出弱监督学习下融合注意力机制的神经网络算法,仅使用图像级别标签便可同时预测缺陷的位置和概率.首先对多尺度感受野模块提取的特征应用特征融合网络,获取更多边缘细节信息;然后通过多层次的自编码器挖掘特征的深层语义信息;同时通过三线性全局注意力模块进一步细化浅层特征的空间位置信息;最后对浅层边缘特征和深层语义特征进行融合增强,得到最终的精细缺陷特征,达到高效准确的自动化表面缺陷检测的目的.基于PyTorch框架用KolektorSDD电转向器表面缺陷数据集验证所提算法,并与U-Net等缺陷检测算法进行对比.检测视觉效果显示,所提算法可以保留更多的细节纹理信息,能够有效扩大细微缺陷与复杂背景之间的特征差异.通过大量实验表明,该算法在复杂场景下比其他模型更为准确,其精准率、F1值和总体精度都有所提升.  相似文献   

3.
工件表面缺陷检测是保障工件质量的重要环节,在有足够标签的情况下,有监督学习可以很好地对其缺陷进行分类,但当有新的工件需要检测时,又要标注新的数据集.为了解决该问题,本文利用不同工件之间缺陷种类的相似性,并基于迁移学习的思想,提出了一种全局特征和局部特征共同适应的无监督域适应方法(GLDA).该方法首先利用生成对抗网络对...  相似文献   

4.
异常用电检测旨在识别出不符合正常用电规律或者违反用电合约的用电行为。针对现有基于重构的检测方法依赖标记的正常样本和难以捕捉复杂时间依赖性的问题,提出一种基于深度孪生自回归网络的无监督异常用电行为检测模型(DSAD)。所提模型通过两个孪生自回归子网络来分别独立地对无标记的输入数据进行重构,再将两个子网络的重构误差相结合来预测数据中的正常样本,并利用多头自注意力机制来有效地捕捉时间依赖性、周期性和随机性等复杂特征。在大规模时序数据集和国家电网真实用电数据集上进行实验所获得的结果表明,所提模型在AUC以及AP等性能指标上取得了更好的检测效果。  相似文献   

5.
为提升目标跟踪精度,设计一种基于注意力机制的无监督单目标跟踪算法。该算法使用DCFNet网络作为基本网络,通过前向跟踪和后向验证实现无监督跟踪。为结合上下文信息,引入特征融合方法,且将DCFNet网络每一层所提取的特征通过双线性池化调整分辨率以便进行特征融合;为关注不同特征通道上的关系,引入通道注意力机制SENet模块;设计一个反向逐帧验证方法,在反向验证中间帧的基础上再预测第一帧,进而减少判别位置的误差。在公共数据集OTB-2015上的测试结果显示,本算法AUC分数达60.6%,速度达61FPS。与无监督单目标跟踪UDT算法相比,所设计算法取得了更优的目标跟踪性能。  相似文献   

6.
赵慧  钮焱  李军 《计算机仿真》2024,(3):188-194+213
针对钢材表面缺陷检测精度低,易漏检、误检、定位不准确等问题,提出一种基于改进YOLOv4的钢材表面缺陷检测算法,首先使用K-means++算法分析标注框的分布信息,获取最优的锚框,提高定位精度,减少网络损失;其次在YOLOv4网络原有特征层基础上继续增加一浅层特征即尺度为104×104的新特征层,增大特征检测尺度,提高小缺陷目标检测精度;最后在原始主干网络的基础上引进注意力机制,使网络更多关注有用信息,从而使检测更准确。将上述算法与其它算法在NEU-DET数据集上进行对比实验,所提算法平均检测精度相较于原YOLOv4提高了4.69%达到78.10%,相较于目前其它的主流目标检测算法也更优秀。  相似文献   

7.
针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YOLOv8。通过加入改进后的卷积注意力机制模块(CBAM)对密集目标更好的确定;通过将FPN结构改为BiFPN更加高效的提取上下文信息;通过增加自适应特征融合(ASFF)自动找出最适合的融合特征;通过将SPPF模块替换为精度更高的Sim CSPSPPF模块。同时,针对微小物体检测,提出了四头ASFF预测头,可根据数据集特点进行替换。实验结果表明,MCB-FAH-YOLOv8算法在VOC2007数据集上检测精度(mAP)达到了88.8%,在NEU-DET钢铁缺陷检测数据集上检测精度(mAP)达到了81.8%,较基准模型分别提高了5.1%和3.4%,该算法在牺牲较少检测速度的情况下取得较高的检测精度,很好的平衡了算法的精度和速度。  相似文献   

8.
复杂纹理瓷砖表面存在较多的低可视度小目标缺陷与严重的复杂纹理背景干扰,使应用目标检测方法时易出现较高的误检率和漏检率。为提升复杂纹理瓷砖表面缺陷检测效率,提出了基于通道与空间联合注意力的复杂纹理瓷砖表面缺陷检测方案。首先通过建模深浅层特征通道间关系设计了一种选择性特征融合方法,以提升模型对小目标缺陷的特征表达;其次,提出了通道与空间联合注意力模块,通过通道注意力和空间注意力来筛选关键特征通道和抑制纹理区域,使模型着重于学习缺陷特征以增强模型辨别缺陷与纹理的能力;最后,在复杂纹理瓷砖表面缺陷数据上进行了实验验证。实验结果表明,相较于AFF(attentional feature fusion)和CBAM(convolutional block attention module)方法,选择性特征融合方法和通道与空间联合注意力模块使模型检测性能分别提高了5.3 AP、6.32 AP。最终,实验证明了该方案分别优于现有的瓷砖检测方法YOLOv5和纹理织物缺陷检测AFAM方法1.32 AP、2.12 AP。  相似文献   

9.
注塑空瓶在生产过程中瓶身表面会产生大量缺陷,这些缺陷对产品的外观和使用造成重要的影响。传统的人工检测由于劳动强度高、检测效率低等缺点已不适用,基于机器视觉的传统检测算法对于复杂的场景变化,所提取的特征通常很难用于缺陷分类和识别。因此,提出一种基于SSD算法,对注塑空瓶表面缺陷进行检测。考虑空瓶表面缺陷较小,特征难以提取,为提高检测效果,在SSD网络结构中加入特征融合模块,为预测层提供丰富的语义特征;同时在网络中引入注意力机制,增加网络的特征提取能力,有效地提高网络的检测精度。通过用空瓶表面缺陷数据集对本文的方法进行验证,准确率为98.3%,漏检率为0.74%,误检率为0.96%,mAP为96.5%,相比原始的SSD算法的mAP,本文算法提高了近5.6个百分点。  相似文献   

10.
利用照相机成像对工业环境中的物体进行表面缺陷检测是自动检测的主要应用之一.近年来,生产规模的扩大对缺陷的快速检测提出了要求,传统方法难以达到较高的效率.同时,缺陷检测更注重对纹理特征的提取,通用的深度卷积网络不能直接应用于该任务.为了克服以上挑战,本文提出了一种基于单阶段目标检测算法的表面缺陷检测模型,通过更宽的骨干网络提取丰富的上下文信息,进行多尺度特征融合,针对不同的检测目标采用差异化的检测头部;同时引入注意力机制,提高特征利用率;为了验证所提出方法的有效性,在3个数据集上进行了实验,取得了较好的性能,并与其他模型进行比较,表明所提出的方法优于现有方法.  相似文献   

11.
镍铁基高温合金GH4169合金由于其良好的综合性能被广泛应用在航空、石化、核能等行业,其冶炼工艺复杂,制备工艺路线较长,因此在铸造过程中会不可避免地产生大量组织缺陷,这些缺陷会对合金的性能造成重要的影响。为了消除合金组织表面缺陷,需要研究合金组织表面缺陷的分布和成因以此提高合金的冶炼技艺。但传统人工检测GH4169合金组织表面缺陷效率低、精度差,很难用于检测大棒材。因此,为了实现组织表面缺陷的自动检测,在RetinaNet网络结构的基础上提出了一种CA-RetinaNet网络结构用于GH4169合金组织表面缺陷检测,该方法主要增强了网络检测小缺陷的能力。首先,在特征提取网络中使用了CA-Resnet结构,引入轻型注意力机制对感兴趣目标进行特征权重增强,提高了含有目标通道的权重;然后对RetinaNet网络中的特征金字塔网络进行了优化,重新构建了特征金字塔网络的底层结构,以获取更大的特征图检测小缺陷。利用CA-RetinaNet网络模型在GH4169合金组织表面缺陷数据集上进行检测实验,取得了较高的准确率,相较于原始RetinaNet网络,mAP值提升了8.6%,极大地提升了网络的检测精...  相似文献   

12.
针对发动机转子表面存在磕划伤和凸起等弱对比度微小缺陷难以检测的问题,本文提出一种利用多方向照明结合卷积神经网络模型的发动机转子表面缺陷检测方法。首先,采用光度立体法获得增强图形凹凸性特征的曲率图和高度图作为输入图像;其次,提出一种优化的RCF模型,充分利用跳层连接将首阶段与后续阶段的侧输出特征融合,提高网络深层对精细尺度下信息的保留能力;通过通道及空间注意力机制对模型侧输出进行强化,增强有效特征并抑制干扰;优化损失函数,使数据集中无缺陷信息的图像样本也能够适用于网络模型的训练;最后,以人工标注的方式制作数据集并验证优化模型的有效性。试验结果表明,与经典的缺陷检测方法相比,本文方法对转子的表面缺陷区域具有更好的检测效果,改进模型的像素准确率达94.31%,比RCF提高了0.87个百分点。  相似文献   

13.
在电机磁瓦生产中可能因生产工艺不可避免产生残次品从而影响电机质量,因此对电机磁瓦质量进行挑选,去除残次品,成为电机磁瓦生产中的必须工序。为解决传统图像处理检测能力弱、效率低且检测精准度低等问题,在ResNet-50的网络结构基础上,提出一种融合多重注意力机制残差网络的电机磁瓦缺陷检测网络模型。该目标检测网络结合卷积网络和注意力机制(Convolutional Block Attention Module, CBAM)构建了一种可以和网络进行端到端训练的非降维通道注意力和空间注意力串联模块,以建立特征之间的空间相关性,增强网络性能。在电机磁瓦数据集上的实验结果表明,改进的目标检测网络在电机磁瓦缺陷图像的全类别平均准确率mAP达到96.92%,所提算法的mAP值较原始ResNet-50网络算法提升了2.17%。验证了所提算法对电机磁瓦缺陷检测任务的有效性。  相似文献   

14.
针对无人机在电力巡检过程中对绝缘子及其缺陷检测的准确率较低、实时性较差的问题,提出一种改进CenterNet的绝缘子缺陷检测模型.首先,使用轻量级网络EfficientNet-B0代替原始模型的特征提取网络ResNet18,在保证模型提取能力的同时加快了其推理速度;其次,搭建特征加强模块(Feature Enhance...  相似文献   

15.
无监督特征选择算法可以对高维无标记数据进行有效的降维,从而减少数据处理的时间和空间复杂度,避免算法模型出现过拟合现象.然而,现有的无监督特征选择方法大都运用k近邻法捕捉数据样本的局部几何结构,忽略了数据分布不均的问题.为了解决这个问题,提出了一种基于自适应邻域嵌入的无监督特征选择(adaptive neighborhood embedding based unsupervised feature selection, ANEFS)算法,该算法根据数据集自身的分布特点确定每个样本的近邻数,进而构造样本相似矩阵,同时引入从高维空间映射到低维空间的中间矩阵,利用拉普拉斯乘子法优化目标函数进行求解.6个UCI数据集的实验结果表明:所提出的算法能够选出具有更高聚类精度和互信息的特征子集.  相似文献   

16.
在竹条表面缺陷检测中,竹条表面缺陷形状各异,成像环境脏乱,现有基于卷积神经网络(CNN)的目标检测模型面对这样特定的数据时并不能很好地发挥神经网络的优势;而且竹条来源复杂且有其他条件限制,因此没办法采集所有类型的数据,导致竹条表面缺陷数据量少到CNN不能充分学习.针对这些问题,提出一种专门针对竹条表面缺陷的检测网络.该...  相似文献   

17.

随着多云时代的到来,云际智能运维能够提前检测处理云平台的故障,从而确保其高可用性. 由于云系统的复杂性,运维数据在数据局部性和数据全局性上呈现出多样的时间依赖和维度间依赖,这给多维时间序列异常检测带来很大的挑战. 然而,现有的多维时间序列异常检测方法大多是从正常时序数据中学习到特征表示并基于重构误差或预测误差检测异常,这些方法无法同时捕获多维时间序列在局部性和全局性上的信息依赖,从而导致异常检测效果差. 针对上述问题,提出了一种基于融合学习的无监督多维时间序列异常检测方法,同时对多维时间序列的数据局部特征和数据全局特征进行建模,得到更加丰富的时序重构信息,并基于重构误差检测异常. 具体地,通过在时域卷积网络中引入自注意力机制使得模型在构建局部关联性的同时更加关注数据全局特征,并在时域卷积模块和自注意力模块间加入信息共享机制实现信息融合,从而能够更好地对多维时序的正常模式进行重构. 在多个多维时间序列真实数据集上的实验结果表明,相较于之前的多维时间序列异常检测,提出的方法在F1分数上提升了高达0.0882.

  相似文献   

18.
随着计算机视觉领域中各项研究的发展,目标跟踪变得越来越热门,在各行各业得到广泛应用.基于无人机的目标跟踪也随之得到发展.相比于普通的目标跟踪,利用无人机进行目标跟踪有不少优势,但是也存在一些挑战.针对有关无人机目标跟踪的数据集有限,数据质量不高,且部分数据集中数据缺少统一标注的情况,基于无监督学习,设计了一种新的无人机...  相似文献   

19.
优质木材深受人们喜爱,但木材存在多种缺陷导致优质木材产量少,木材利用率低。运用深度学习的目标检测算法可以实现木材表面缺陷的快速稳定检测,以此提高木材的优质化和利用率。针对目前木材表面缺陷目标小、密集和复杂等特点导致检测精度较差的问题,提出了一种基于改进YOLOv7的木材表面缺陷检测模型YOLOv7-ESS。针对木材的裂缝缺陷存在极端长宽比例而影响检测效果的问题,嵌入注意力模块ECBAM,通过加强对极端长宽比例缺陷的注意力,提高模型的特征提取能力。针对在提取特征时木材表面小缺陷特征信息丢失严重的问题,引入浅层加权特征融合网络SFPN,以深层特征图作为输出,同时有效利用浅层特征信息,提高小缺陷的识别准确率。引入SIoU损失函数,提升模型收敛速度及模型精度。结果表明,YOLOv7-ESS模型平均检测精度为94.7%,较YOLOv7检测精度提高了11.2个百分点,满足木材生产加工时的缺陷检测要求。  相似文献   

20.
为了提高无监督嵌入学习对图像特征的判别能力,提出一种基于深度聚类的无监督学习方法。通过对图像的嵌入特征进行聚类,获得图像之间的伪类别信息,然后最小化聚类损失来优化网络模型,使得模型能够学习到图像的高判别性特征。在三个标准数据集上的图像检索性能表明了该方法的有效性,并且优于目前大多数方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号