首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
针对当前风力发电系统输出功率随机波动的问题,以永磁同步风力发电机(PMSG)与直流侧储能系统(钒氧化还原电池)整合的风力发电系统为基础,进行数字仿真建模,采用MATLAB/Simulink软件对固定负载,变化风速工况;固定风速,负荷瞬变工况;风速和负荷同时变化工况;进行了仿真试验和分析。结果表明,对于采用储能技术的风电场并网功率随机波动的平抑控制,可以利用蓄电池的充放电特性,在风速变化以及负荷瞬变时进行功率平衡的调节。  相似文献   

2.
Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.  相似文献   

3.
储能系统由于能够实现电能的时空平移,具有响应速度快,规模化等优点,是改善风电波动性,提高其并网能力的有效手段,构建风储联合发电系统成为目前研究重点.简单介绍了风电并网对电力系统的影响及不同类型电池储能技术的发展现状,给出了部分国内外风储联合发电系统的示范工程,并分析了平滑风电功率波动,跟踪计划出力曲线和削峰填谷3种主要运行方式,重点阐述了目前风储联合发电系统控制策略和储能容量配置研究现状,对进一步开展风储联合发电系统的研究进行了展望,指出经济性仍然是制约储能技术应用的关键问题之一,提高包含储能单元的风储联合发电系统的经济性是今后的研究重点.  相似文献   

4.
Electrochemical energy storage systems are considered as one of the most viable solutions to realize large-scale utilization of renewable energy. Among the various electrochemical energy storage systems, flow batteries have increasingly attracted global attention due to their flexible structural design, high efficiencies, long operating life cycle, and independently tunable power and energy storage capacity. Although promising, a number of challenges including the high cost of flow battery materials hinder the broad market penetration of flow battery technology. Polymer electrolyte membrane, as a key component in flow batteries providing pathways for charge carriers transport and preventing electrolytes crossover, takes over 25% of the entire cost of the battery system. Apparently, the membrane not only plays pivotal roles in the operation characteristics of a flow battery, but also largely influences the financial cost of the battery system. To provide insights and better understanding of membranes towards enhancing their performance and cost-effectiveness, we therefore present recent advances and research outcomes on the development of polymer electrolyte membranes as well as their applications in flow batteries, particularly all-vanadium redox flow batteries. Various aspects of polymer electrolyte membranes including functional requirements, characterization methods, materials screening and preparation strategies, transport mechanisms, and commercialization progress are presented. Finally, perspectives for future trends on research and development of polymer electrolyte membranes with relevance to flow batteries are highlighted.  相似文献   

5.
随着可再生能源大规模接入电网,风力发电和光伏发电的不稳定性威胁着电网的安全稳定运行。储能系统作为一种可调度的能源,可实现可再生能源输出功率的平滑输出。通过分析风光联合发电系统输出功率特性,提出采用平抑指标和平滑效果评价指标对比分析滑动平均法和最小二乘法滤波效果,用于确定蓄电池储能配置的参考输出功率。在获得平滑后的功率曲线后,根据提出的曲线局部平滑指标和总体平滑指标,综合考虑蓄电池投资成本和平滑效果优化配置储能容量。最后,采用某地区实际的风光资源历史数据,验证了所提方法的可行性。  相似文献   

6.
风力发电具有的间歇性、随机性和难以预测性等缺点给电网带来了冲击,限制了风电的大规模并网。储能装置以其运行方式灵活、可充可放的运行特性、与环境兼容等特点与风力发电联合运行,为风电等可再生资源规模化利用提供了有效途径。因而总结了储能装置在含风电电力系统中的应用,介绍了各种储能装置的分类,在此基础上研究了各种储能装置的特性和适用范围,分析了储能装置在含风电电力系统中的应用现状,并探讨了储能装置未来的研究方向。  相似文献   

7.
This paper describes the development of a general probabilistic model of an autonomous wind energy conversion system (WECS) composed of several wind turbines (wind farm) connected to a load and a battery storage. The proposed technique allows the simulation of wind farms containing identical or different wind turbines types and considers a bidirectional flow of power in and out of the battery. The model is based upon a simple procedure to estimate the joint probability distribution function of the total available wind power and that of the turbines operating modes due to hardware failure. A methodology is also developed to use the proposed model to determine an upper limit on the size of the battery storage required for a given number of turbines to satisfy the load with a certain expected energy not supplied (EENS). The model can also be used to evaluate the energy purchased from or injected to the grid in the case of grid-connected systems  相似文献   

8.
全钒液流电池因其安全可靠,使用寿命长,环境友好,电池均匀性好,可实时直接监测其充放电状态等特点,已成为规模储能技术领域的重要设备.本文详细分析了全钒液流电池的产业化挑战,从而提出主要技术发展方向.另外,重点对中国科学院大连化学物理研究所和大连融科储能技术发展有限公司合作团队在电堆,电池系统和应用示范方面的最新进展进行了总结.  相似文献   

9.
The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ $0.10 kW?1 h?1. There is also a low‐level utility scale acceptance of energy storage solutions and a general lack of battery‐specific policy‐led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas‐ and diesel‐fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the potential challenges of integrating wind farms into the future power systems in Taiwan. It first describes the developments of wind power in Taiwan and the basic criteria and general practices of connecting renewable energy resources to transmission and distribution systems at Taiwan Power Company. The paper then discusses current and future developments of power systems and wind farms in Taiwan and the possible system integrations of these potential wind farms. Finally, it identifies the major general and specific challenges of wind farm integration to the future power systems in Taiwan and concludes with suggested approaches to meet these challenges.  相似文献   

11.
Junji Kondoh 《风能》2010,13(6):529-541
Output power fluctuation of high penetration of wind power causes demand and supply imbalance in electric power systems and results in frequency deviation if the fluctuation is not fully compensated by other regulable power plants. In Japan, some electric utilities have started to accept only the wind farms which disconnect and give up generating power during light‐load periods with less adjustable reserve. Otherwise, wind farms are required to employ battery energy storage systems (BESSs) to charge the generated power during the light‐load periods. Instead of these uneconomical solutions, this paper proposes autonomous frequency regulation by controllable loads such as electric water heaters (EWHs). In the paper, the acceptable increase of wind power generation by the proposed load control has been evaluated quantitatively in the power system of the Hokkaido Island in Japan. The result indicates that the acceptable increase of wind power generation goes from 250 to 675 MW by applying the proposed autonomous frequency regulation on all EWHs, and the total cost to implement the autonomous frequency regulation on the EWHs is around 1/26 compared with a solution using BESSs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Wind is a variable and uncontrollable source of power with a low capacity factor. Using energy storage facilities with a non-firm connection strategy is the key to maximum integration of distant wind farms into a transmission-constrained power system. In this paper, we explore the application of energy storage in optimal allocation of wind capacity to a power system from distant wind sites. Energy storage decreases transmission connection requirements, smoothes the wind farm output and decreases the wind energy curtailments in a non-firm wind capacity allocation strategy. Specifically, we examine the use of compressed air energy storage (CAES) technology to supplement wind farms and downsize the transmission connection requirements. Benders decomposition approach is applied to decompose this computationally challenging and large-scale mixed-integer linear programming (MILP) into smaller problems. The simulation results show that using energy storage systems can decrease the variation of wind farms output as well as the total cost, including investment and operation costs, and increase the wind energy penetration into the power system.  相似文献   

13.
利用可再生能源(如太阳能和风能)的分布式发电,其输出是典型的不稳定,这些不稳定的输出对现有的电力系统产生负面影响。为了减少负面影响,需要控制在微网中的各个分布式电源的输出。设计了一种基于蓄电池储能的并网光伏发电系统结构,结合功率流动的控制策略介绍了各部分的运行原理,对系统能流模型进行了详细分析,根据电池的特性设计了充放电的控制策略。在PSCAD平台下对设计的模型进行仿真,通过在不同能流模型下控制策略仿真分析,验证所提出储能方案的正确合理性,对功率平衡起到很好的调节作用。  相似文献   

14.
风能等新能源发电系统在供电体系中的占比越来越大,但其随机性和波动性问题,将风力发电厂输出的电力直接向电网调度会造成安全隐患。为了解决这一问题,基于电池储能系统提出了一种风能发电智能调度技术,该技术以风力发电动力学模型和电池储能系统状态模型为基础,利用双重扩展卡尔曼滤波算法实现了风能发电系统的稳定输出。以某地风速实测数据和电网需求功率为参考,对不同算法的输出功率预测值进行了仿真分析和实验对比。结果表明:提出的改进算法预测的风速值误差相比于传感器观测值平均误差降低了28%以上,可以更准确地提供发电系统输出功率;提出的智能调度技术可以使电压波动幅度降低60%以上,系统整体输出功率稳定在参考功率附近,误差不超过2%,有一定的实用意义。  相似文献   

15.
随着储能技术的发展和储能电站规模的不断增加,系统大停电后可考虑储能电站作为系统辅助启动电源以协助系统的恢复,考虑铅蓄电池、磷酸铁锂电池、全钒液流电池和钠硫电池为主要储能电站电池类型,根据蓄电池组放电功率和放电持续时间的幂次函数关系建立不同电池类型储能电站放电模型,储能电站放电模型和经济模型一起构成系统辅助启动电源模型,进而在系统辅助启动电源模型的基础上,以给定恢复时间内系统恢复的功率最大为目标函数,提出了考虑系统辅助启动电源的黑启动方案优化模型,并通过savnw23节点系统算例验证了储能电站作为系统辅助启动电源的可行性和黑启动方案优化模型的正确性。  相似文献   

16.
在储能系统和光伏发电相结合的统筹规划中,电池储能投资成本、光伏装机容量、光伏并网价格以及热电联产(CHP)的采用对电池储能的容量配置和电池充放电策略具有显著影响。基于分时电价下的光伏储能系统,将电池储能的容量和功率的配置转化为根据电价时段划分的约束优化问题。以某工业园区为研究对象,建立光伏-储能系统功率流模型,优化计算得到经济效益最优化的电池容量和功率配置结果及电池充放电策略。基于内部收益率、光伏自我消纳率等指标,根据光伏上网价格和电网谷段电价的关系划分场景,通过光伏发电容量和电池价格的变化探究光伏-储能系统中电池储能的容量配置、经济效益的变化规律和热电联产对系统的影响。  相似文献   

17.
A simulated battery energy storage (BES) system is considered for integration into Taiwan Power Company System to study the economic benefits of the BES. The system had a pumped storage power plant with four units. The authors applied multipass dynamic programming to the solution of the short term hydrothermal coordination problem considering pumped storage and battery energy storage systems. The algorithm can quickly converge to an optimal generation schedule while achieving the minimum production cost of power systems. Substantial savings of memory and CPU time were realized by using this efficient algorithm. The load, committed units, and available water usage data from 9:00 PM June 17, 1988 to 9:00 PM June 24 were used to test this algorithm. Results showed that within 20 minutes on a PC/386 this algorithm could find the optimal generation schedule of all the units and the switching time of the BES while satisfying all the constraints  相似文献   

18.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

19.
储能电池是分布式发电系统的关键组件。增加储能电池的容量可以提高发电系统的可靠性,但会增加系统的投资和运行费用。基于上海地区全年8 760 h的气象数据,计算了风光互补发电系统在不同储能容量下的负荷缺电率和能量溢出率的变化。对于独立的风光互补发电系统,在满足能量溢出率小于0.3的情况下,如果系统缺电率维持在1%左右时,需要配置3天的储能容量;如果系统缺电率为0,则需要配置5天的储能容量。  相似文献   

20.
Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand PHEVs in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号