首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用锂离子电池进行储能已成为大容量储能技术研究的重点,但为保证电池组的可靠性、安全性、一致性及使用寿命,必须设计电池管理系统来对锂离子电池进行有效管理。本文提出了一种适用于大容量储能技术的锂离子电池管理系统,该管理系统采用分层采集和管理的方法,分别对单体电池、电池组和储能子系统进行管理。文章详述了分层管理系统的结构、功能和管理策略,其中着重介绍了单体电池数据采集功能、电池状态估计功能和均衡管理功能,并进行了实验验证,给出了实验结果分析。实验结果证明了该管理系统可以满足实际的大容量储能应用需求,可以实现锂离子电池的高精度状态估计功能和高效均衡控制策略,具有很好的应用前景,为后续产业化发展提供了一种技术和思路。  相似文献   

2.
The attention on green and clean technology innovations is highly demanded of a modern era. Transportation has seen a high rate of growth in today's cities. The conventional internal combustion engine‐operated vehicle liberates gasses like carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and water, which result in the increased surface temperature of the earth. One of the optimum solutions to overcome fossil fuel degrading and global warming is electric vehicle. The challenging aspect in electric vehicle is its energy storage system. Many of the researchers mainly concentrate on the field of storage device cost reduction, its age increment, and energy densities' improvement. This paper explores an overview of an electric propulsion system composed of energy storage devices, power electronic converters, and electronic control unit. The battery with high‐energy density and ultracapacitor with high‐power density combination paves a way to overcome the challenges in energy storage system. This study aims at highlighting the various hybrid energy storage system configurations such as parallel passive, active, battery–UC, and UC–battery topologies. Finally, energy management control strategies, which are categorized in global optimization, are reviewed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
文章提出了一种光伏电力混合储能系统的能量管理控制策略,主要应用于含有光伏电源(Photovoltaic,PV)、电池能量存储(Battery Energy Storage, BES)和交流负载的发电网络系统中。该策略能够充分利用电力系统中组合架构之间的连接关系,有效缓解了目前电网中BES系统存在的过充电、欠充电等问题,并将充放电电流控制在一个相对稳定的范围内,延长了电池的使用寿命。分别在含有传统铅酸和锂离子电池的混合能量系统中使用6 kVA电源转换器进行实验,结果证明了所提出的能量管理策略的正确性和有效性。  相似文献   

4.
Hybrid energy storage systems (HESSs) help mitigating the fluctuations and variable availability of certain renewable sources, such as wind power, as they can provide support in different time scales. Therefore, regulating their state-of-charge (SOC) becomes crucial to ensure that the hybrid system complies with generation commitments agreed in time-ahead markets despite subsequent unexpected wind speed variations. So far, research has been mainly targeted at avoiding extreme SOC situations in the storage devices, whereas the regulation of this parameter to specific values has often been disregarded. A novel approach is proposed in this work, where model predictive control (MPC) is used to regulate the SOC of a HESS under variable wind and grid demand scenarios. The MPC-based supervisory controller developed for the hybrid system has been implemented and simulated under different situations. This controller monitors the future variation of the SOC with the aim of having the HESS available to develop its assigned functions successfully. The results show that a proper regulation of the SOC in the HESS increases the capacity to manage the active power supplied to the grid by the hybrid system based on wind power, as well as the level of compliance with generation commitments established time ahead.  相似文献   

5.
大容量锂离子电池储能系统对完善传统电网和高效利用新能源都具有非常重要的作用。为了实现大容量锂离子电池储能系统的高倍率化、长寿命化以及高安全性,高性能电池热管理系统的研发刻不容缓。本文总结了温度对锂离子电池性能的影响规律,综述了空冷、液冷、热管冷却、相变冷却这4种典型热管理技术的研究概况,分析了热管理技术在锂离子电池储能系统中的应用与研究状况。随着锂离子电池储能系统工作倍率的提高,产热量随之增大,对热管理系统的要求也越来越高。下一步的研究工作应围绕空冷系统优化、基于新型冷却介质的液冷系统、经济型热管及多目标优化设计这4方面展开。  相似文献   

6.
机车经过一定时间的运行,各部件都会发生磨耗、变形或损坏,为了使机车稳定可靠地运行或延长其使用期限,必须进行阶段性检修和测试。目前把水阻作为负载的测试手段已被广泛应用于机车柴油机测试,这种静态连续测试消耗的能量占发动机自身寿命周期内产生能量的15%~30%。这不仅造成了极大的能源浪费,也会引起金属极板的严重腐蚀。本工作以对柴油机测试过程产生的电能进行回收的项目为例,介绍了一种新型嵌入式储能系统的整体设计及储能系统中关键设备的功能,并对系统进行了仿真实验,仿真实验结果证明该系统可以稳定可靠地回收柴油机测试过程中产生的能量。  相似文献   

7.
液流电池技术利用流动的电解液作为电化学储能介质,适合于进行大容量电能与化学能的转化与储存。液流电池通常具有寿命长、效率高等技术特征,在平滑风能、太阳能等可再生能源发电出力以及微型电网、智能电网建设等方面有着广阔的应用前景。本文论述了液流电池的研究与开发现状,概述了目前逐渐具备工程实施能力的全钒液流电池体系,分析了液流电池新体系的研究开发状况,指明了它们各自需要进行技术突破的重要问题,最后展望了金属/ 空气液流电池的技术优势与未来发展前景。  相似文献   

8.
随着风力发电大规模入网,其随机性,波动性和间歇性特征对电力系统调频,调峰等有功平衡手段及电压稳定的影响越来越严重.储能系统能够在一定程度上控制风场的输出功率,平抑风电功率波动,改善风机低电压穿越能力,甚至为系统提供辅助服务,是从风场侧提高系统对风电的接纳能力的可行解决方案之一.作者在简要的介绍了风场储能技术应用现状的基础上,重点针对储能型风场内蓄电池储能系统的设计方案,容量优化及控制策略的研究现状及关键问题进行综述及探讨.  相似文献   

9.
In order to improve the comprehensive energy utilization rate of combined cooling, heating, and power (CCHP) system, a hybrid energy storage system (HESS) is proposed in this paper consisting of electric and thermal energy storage systems. And the overall optimization design and operation of CCHP system with HESS are the main problems to be solved in application. Therefore, the topology and the energy flow model of CCHP system with HESS are established and analyzed according to the energy conversion characteristics of the component equipment. Moreover, combined with five evaluative restrictions for HESS system, a rule-based energy management strategy is designed to realize the decoupling regulation of electric energy and thermal energy in CCHP system. On this basis, a multi-objective optimization model is studied by taking the indicators of annual cost ratio, the primary energy consumption ratio, and loss energy ratio, and then the capacity parameters are optimized by particle swarm optimization algorithm (PSOA). Finally, a case is carried out to compare the energy allocation situations and capacity optimization results between CCHP system with HESS and CCHP system with single thermal energy storage system (ST). Results show that the capacity of ICE is reduced by 34%, and the annual cost and the primary energy consumption are saved about 7.69% and 18.47%, respectively, demonstrating that HESS has better optimization effect and applicable for small-scale CCHP system.  相似文献   

10.
Development of lithium batteries for energy storage and EV applications   总被引:3,自引:0,他引:3  
The results of the Japanese national project of R&D on large-size lithium rechargeable batteries by Lithium Battery Energy Storage Technology Research Association (LIBES), as of fiscal year (FY) 2000 are reviewed. Based on the results of 10 Wh-class cell development in Phase I, the program of Phase II aims at further improvement of the performance of large-size cells and battery modules, and the formulation of roadmaps toward worldwide dissemination of large-size lithium secondary batteries. In addition to the above R&D programs, a new target was presented particularly for the near-term practical application of several kWh-class battery modules in FY 1998.

For the large-size battery modules, two types of 2 and 3 kWh-class battery modules have been developed for stationary device and electric vehicle applications, respectively. The battery modules for both types have achieved most of the targets other than cycle life. Currently, further improvements in the cycle life of the cells themselves are being pursued. For this purpose, the materials for cathodes and anodes, the shapes and structures for batteries and the methods for cell connection are being re-investigated.

The development of middle-size battery systems for mini-size electric vehicles (EVs), as well as for demand-side stationary device applications is under way. These battery systems have been fabricated and their fundamental performance confirmed. They are now being subjected to field tests.  相似文献   


11.
分析了微型燃气轮发电系统中能量贮存需求,提出了确定蓄电池容量的计算方法。  相似文献   

12.
为满足煤炭行业和煤矿企业对于供电可靠性日益增长的需求,同时探索兆瓦级储能系统在工业用户侧的实用化解决方案,本项目在内蒙古乌海平沟煤矿设计建造了基于铅酸电池和磷酸铁锂电池储能技术的矿用兆瓦级智能应急电源。系统主要功能为:在电网正常供电时,替代传统的油浸电容器进行无功补偿;在电网出现供电故障时,为煤矿的特别重要负荷提供至少30 min的连续可靠供电。除此外,系统还可根据用户需求执行包括削峰填谷、分布式新能源发电波动平抑在内的多种功能。为保证应急电源系统的安全性、可靠性和使用寿命,本工作在进行设计时着重考虑了蓄电池的选型、容量配比、成组设计以及储能变流系统(PCS)的电路拓扑设计和电池维护高级智能控制策略,旨在探索和实用。  相似文献   

13.
In this paper, a new approach for optimally sizing the storage system employing the battery banks for the suppression of the output power fluctuations generated in the hybrid photovoltaic/wind hybrid energy system. At first, a novel multiple averaging technique has been used to find the smoothing power that has to be supplied by the batteries for the different levels of smoothing of output power. Then the battery energy storage system is optimally sized using particle swarm optimization according to the level of smoothing power requirement, with the constraints of maintaining the battery state of charge and keeping the energy loss within the acceptable limits. Two different case studies have been presented for different locations and different sizes of the hybrid systems in this work. The results of the simulation studies and detailed discussions are presented at the end to portrait the effectiveness of the proposed method for sizing of the battery energy storage system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
针对修井设备电动化更新需求以及普通电动修井机推广应用受限的问题,研制了电储能修井机。该修井机以磷酸铁锂型电池作为储能装置,通过技术研发突破网电储能协同控制、电池管理及油气环境下的使用安全和现场检测评价等技术难题,形成了网电储能联合供电的电控技术、“智慧报警”防护体系的电池管理系统,实现了电池储能技术在修井机上的良好应用。经现场测试,电储能修井机可满足不同井况的修井作业需求。在停电情况下,该储能装置可独立供电作业,适用范围大,应用前景广阔。  相似文献   

15.
In this paper, a hierarchical state machine energy management control method based on minimum cost algorithm is proposed. This method consists two layers, the bottom layer is responsible for the control of each devices while the top layer uses state machine strategy and minimum utilization algorithm to distribute power for each micro sources. Combining the minimum utilization cost theory with the state machine control method, the control system can optimize the utilization cost and energy storage level of the electric-hydrogen hybrid energy storage system under the premise of meeting the requirements of the basic operation of the microgrid. Through the centralized management of the top layer and the control of the bottom layer, the method completes the operation target of the microgrid, thus improving the energy utilization rate and reducing the utilization cost of the system. The real time simulation is carried out through the RT-LAB semi physical system. By a 72 h online operation under actual conditions, the effectiveness of the proposed method is verified, which ensures the low cost and stability of the island DC microgrid with electric-hydrogen hybrid energy system.  相似文献   

16.
随着可再生能源发电技术的发展,能够整合分布式发电系统的微网成为满足日益增长的电力需求、节省投资和提高能源利用率的一种有效途径。储能系统作为微网必要的能量缓冲环节,其作用越来越重要。文章概述了电池储能系统的基本特性,分析了电池储能系统的运行及控制原理,并详细阐述了其在微网中的作用。基于蓄电池的储能系统,不仅能起到能量缓冲的作用,还能提供短时供电、缓冲微网中负荷波动、改善微网电能质量,对提高微网的经济效益具有重要作用。  相似文献   

17.
报道了一种新型移动式钠离子电池储能系统,其核心储能器件为钠离子电池,采用自制的NaNi1/3Fe1/3Mn1/3O2为正极材料,负极材料为硬碳。采用XRD、DSC等对正极材料的结构和热稳定性进行分析表征。设计制作了1 A·h软包型钠离子电池,对其电化学性能与安全性进行测试。在此基础上设计了钠离子电池包以及基于钠离子电池的0.1 kW·h新型移动式储能系统。该系统在家用储能、军事电源、低速电动车上有良好的应用前景。  相似文献   

18.
电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一.文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性.  相似文献   

19.
A battery energy storage system (BES) can provide fast active power compensation and hence it also can be used to improve the performance of the load frequency control. In this paper, the study is carried out on a single area model representing the whole power system considering generation rate constraint (GRC). An incremental model of BES is proposed and merged into the load frequency control of the power system. Optimum value of integral gain setting is obtained using integral squared technique (ISE). Dynamic responses of the system are presented with and without considering BES facility. Analysis reveals that BES improves the system performance significantly. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH3. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]2+/[VO2]+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]2+/[VO2]+ is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]2+/[VO2]+ is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energy storage efficiency of redox flow batteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redox flow batteries. This also opens up new and wider applications of nitrogen-doped carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号