首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe3O4被认为是一种储锂性能优异的锂离子电池负极材料,但目前仍存在导电性差和充放电过程体积膨胀问题。文中以L-精氨酸、对苯二甲醛和九水硝酸铁为原料,通过溶剂热反应得到铁离子掺杂L-精氨酸聚合物(W-Fe3O4@NC precursors),随后高温热解制备了杨梅状碳包覆四氧化三铁(W-Fe3O4@NC)复合负极材料。对W-Fe3O4@NC的形貌、表面化学结构、孔隙率和在锂离子电池负极中的电化学性能进行了表征。结果表明,得益于独特的杨梅状形貌、有益的氮掺杂、高度分散的Fe3O4纳米微粒和均匀的碳包覆,W-Fe3O4@NC在1 A/g电流密度下循环800圈后比容量高达815.1 m Ah/g,在5 A/g的大电流密度下,比容量仍保持在232 mAh/g,循环稳定性和倍率性能显著优于纯碳材料(NC)和市售Fe3  相似文献   

2.
Fe3O4/CNTs纳米复合材料用水热法在乙醇和丙二醇的混合溶液中合成,尺寸为5~15 nm的四氧化三铁纳米颗粒均匀附着在碳纳米管表面。作为锂电池负极材料,合成的Fe3O4/CNTs纳米复合材料展现出了优异的长循环特性和倍率循环特性。在电流密度100 mA g-1的条件下,在300次循环充放电后容量仍然能够保持在605 mAh g-1。酸处理碳纳米管的加入为四氧化三铁提供了大量的生长点,显著减小了四氧化三铁颗粒的尺寸,阻止了充放电过程中颗粒的团聚,构建了独特的三维导电网,使复合材料展现出了优异的电化学性能。  相似文献   

3.
水热合成法制备纳米SnO2-Fe2O3复合材料,以SnO2-Fe2O3为活性物质,多壁碳纳米管(MWCNTs)导电纸代替传统铜箔作为负极集流体制作锂离子电池。采用XRD、SEM进行表征,结果显示,SnO2-Fe2O3均匀嵌入到MWCNTs构建的三维导电网络的空隙中。电化学测试结果表明,SnO2-Fe2O3/MWCNTs导电纸作为负极电极能够显著提高锂离子电池的循坏和倍率性能。在100 mA/g电流密度下循环30次,SnO2-Fe2O3/MWCNTs导电纸电池比容量达到1 088 mAh/g,而在200 mA/g电流密度下循环200次后,SnO2-Fe2O3/MWCNTs导电纸比容量能稳定保持在898 mAh/g,表现出良好的循环性能,逐渐增大充放电电流,电池的比容量有所下降但其库伦效率仍然保持在96%以上,而在高倍率(1 600 mA/g)下进行充放电时,SnO2-Fe2O3/MWCNTs导电纸比容量仍然能够保持在547 mAh/g,之后再将电流密度降到100 mA/g,比容量重新回到1 000 mAh/g,SnO2-Fe2O3/MWCNTs导电纸表现出十分优异的电化学性能。   相似文献   

4.
为改善LiNi0.5Co0.2Mn0.3O2(NCM)锂离子电池三元正极材料的电化学性能,采用液相蒸发法将WO3包覆于NCM表面,得到NCM@WO3复合正极材料。通过XRD、SEM和TEM对NCM@WO3复合材料的结构和形貌进行表征,利用充放电测试、循环伏安及交流阻抗测试对其电化学性能进行表征。结果表明,当WO3包覆量为3wt%时,NCM@WO3复合材料性能最佳,在0.5 C下的首次放电比容量为179.9 mA·hg-1,不可逆容量损失降低至42.4 mA·hg-1,循环50圈后容量保持率为98.3%。WO3的包覆提高了锂离子扩散速率,减少了电极材料与电解液的副反应,NCM@WO3复合材料的电化学性能得到提升。   相似文献   

5.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

6.
探索高性能、低成本、环境友好型电极材料一直是电化学储能领域的研究重点,其中,铁氧化物(FeOx:Fe3O4、α-Fe2O3、γ-Fe2O3)作为钠离子电池负极材料具有较大的应用潜力而受到广泛关注。然而,FeOx的电子和离子传导性较差,限制了循环稳定性和倍率性能,将其与碳基材料(石墨烯、石墨/无定型碳、多孔炭、碳纳米管和碳纳米纤维等)进行复合能够显著改善电化学性能。本文详细介绍了FeOx/碳基复合材料作为钠离子电池负极材料的研究现状。分析了导致FeOx负极材料首次库伦效率低、循环稳定性和倍率性能差等问题的原因,以及各复合改性结构的优势,对今后FeOx/碳基复合材料作为钠离子电池负极材料的研究方向进行了展望。  相似文献   

7.
锂硫电池是传统锂离子电池最有前途的替代品之一,多硫化物的溶解和导电性差是制约锂硫电池应用的两个重要因素。通过水热法合成了Fe2O3-还原氧化石墨烯(RGO)-碳纳米管(CNT)复合载硫材料,并通过调节氨水浓度,实现了复合材料中Fe2O3的颗粒尺寸的有效调控,发现小尺寸的Fe2O3颗粒具有更好的吸附和催化作用。合成的Fe2O3-RGO-CNT-S正极材料在1 C倍率下首次放电容量为1 286 mA·h/g,循环500圈后剩余718 mA·h/g,每圈的容量衰减率为0.08%。在0.2、0.5、1、2和4 C倍率下的平均比容量为983、825、769、673和604 mA·h/g,具有良好的倍率性能。在5 C倍率下循环500次仍剩余527 mA·h/g,具有良好的大电流循环性能。Fe2O3-RGO-CNT-S正极材料特别适用于高性能锂硫电池,具有优异的电化学性能主要是由于R...  相似文献   

8.
作为锂离子电池的负极材料,Co3O4因其具有890 mA·h/g的高理论比容量而备受关注。本文通过简单的化学溶液法和热处理制备了Co3O4与膨胀石墨(EG)自组装的多面体复合材料(Co3O4-EG)。当用作锂离子电池的负极材料时,EG与Co3O4质量比为1∶3的Co3O4-EG复合材料电极在0.1 C的电流倍率下经过400次循环后的可逆容量仍高达418 mA·h/g,高于其他Co3O4-EG复合材料(质量比1∶4循环190圈后容量为273 mA·h/g,质量比1∶5循环135圈后的容量为329 mA·h/g),且所有Co3O4-EG复合材料的放电容量均高于纯Co3O4(400圈循环后容量为40 mA·h/g)。Co3O...  相似文献   

9.
硅碳负极是未来锂离子电池材料发展的重点方向之一,本文针对传统球磨法制备硅碳负极复合不均匀、界面融合差等问题,提出了一种超临界二氧化碳(scCO2)流体介质球磨合成Si-Fe-Fe3O4-C复合材料的新方法。研究发现,纳米硅和中间相碳微球(MCMB)在scCO2介质球磨混合过程中,CO2和Fe反应先得到均匀分散的Si-FeCO3-C前驱体,然后FeCO3原位高温固相分解得到Si-Fe-Fe3O4-C复合材料。同时,在scCO2流体渗透下,MCMB剥离成石墨片,并与纳米硅和Fe-Fe3O4实现较好的界面融合,Fe-Fe3O4的引入显著提升了硅碳负极的储锂容量、循环稳定性和倍率性能,Si-Fe-Fe3O4-C复合材料在0.2 A·g?1下100次循环后可逆容量保持在1065 mA·h·g?1。本方法利用超临界流体渗透性好、扩散能力强等特点,合成工艺简便,容易工业化实施,具有商业化开发潜力。   相似文献   

10.
锂硫电池因其高能量密度和低成本而成为最有发展前景的电化学储能器件之一。然而,多硫化物的“穿梭效应”、硫导电率低是锂硫电池商业化面临的主要挑战。本工作中,以Fe(NO)3·9H2O为铁源,NH4F为表面活性剂,通过简单的水热及煅烧处理制备了Fe2O3纳米棒修饰炭布(CC)的柔性Fe2O3/CC复合材料。其中,Fe2O3中介孔的存在有利于电解质的渗透和充放电过程中锂离子的传输和扩散,同时其密集阵列暴露出的丰富活性位点可以实现多硫化物的高效吸附和快速转化,降低多硫化物的穿梭效应。电化学分析显示:Fe2O3/CC正极在0.1 C(1 C=1 672 mA g-1)的电流密度下具有1 250 mAh g-1的高放电比容量,经100圈循环后比容量保持在789 mAh g-1。在2 C的倍率下循环...  相似文献   

11.
用超声辅助溶液燃烧合成技术制备双层碳包覆的Na3V2(PO4)3 (NVP)钠离子电池正极材料,并对其电化学性能进行深入的研究。结果表明,双层碳包覆在NVP颗粒表面,由内自外分别为无定形硬碳和石墨烯。石墨烯添加量为5.0%(质量分数)的碳包覆NVP复合材料具有优异的电化学性能,在1 C倍率下充放电其初始比容量为117 mAh·g–1,循环300圈后容量的保持率为79%,在10 C倍率下其放电比容量高达100 mAh·g–1。这种正极材料电化学动力学性能的提高,源于均匀的双层碳包覆结构及其构建的三维电子传输通道。  相似文献   

12.
阴极材料的开发对于可充电水相电池的发展具有重要意义.本文通过自牺牲模板法和碳包覆法相结合制备了碳包覆介孔Fe3O4纳米阵列阴极材料(Fe3O4@C MNAs).得益于包覆碳层、介孔结构和纳米阵列结构的优异特性, Fe3O4@C MNAs电极表现出良好的倍率性能和优秀的循环稳定性.在组装的Ni/Fe电池器件中, Fe3O4@C MNAs表现出较高的能量密度及功率密度(在能量密度为213.3 W h kg-1时功率密度为0.658 kW kg-1和在功率密度为20.7 kW kg-1时能量密度为113.9 W h kg-1)和出色的循环稳定性(约5000次循环后保持81.7%).  相似文献   

13.
采用溶剂热法制备单分散的Fe3O4微球, 对其表面进行包覆SiO2和氨基化处理, 再与氧化石墨烯复合, 化学还原后得到Fe3O4-W-RGO复合材料。SEM和TEM照片显示, SiO2均匀包覆在Fe3O4微球(直径~440 nm)表面形成Fe3O4@SiO2核壳微球, 紧密束缚于RGO纳米片表面。XRD测试结果表明Fe3O4微球结晶度好、纯度高。电化学性能测试结果表明: 在0.01~3.00 V电压范围和0.1C倍率下, Fe3O4-W-RGO复合材料的首次放电容量为1246 mAh/g, 100次循环后保持830 mAh/g; 在2C倍率下放电容量达到484 mAh/g, 具有较好的倍率性能和循环性能。  相似文献   

14.
过渡金属氧化物(TMOs)用作电极材料时,会在循环过程中产生严重的体积变化,并且其自身的导电率也较低,因此它的电化学性能较差.设计和开发独特的TMOs纳米结构并将其与导电碳基底相结合是改善其电化学性能的有效策略.本工作中,我们设计了一种C/Cu多孔微球,并通过原位合成在碳壁上垂直生长Co3O4纳米片.作为导电基底,C/Cu多孔微球提供了多尺度孔隙网络和大的电极/电解质接触界面,显著改善了电子和离子扩散动力学.原位合成的Co3O4纳米片牢牢地固定在碳壁上,从而提高了复合微球在长期循环中的结构稳定性.得益于独特的结构特征,用作锂离子电池负极材料的C/Cu@Co3O4复合多孔微球表现出优异的倍率性能、高充电比容量和出色的循环稳定性.  相似文献   

15.
使用溶胶凝胶原位碳热还原制备了Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料(石墨烯/LiCo0.03Fe0.97PO4),以期获得比容量高、充放电速率快和循环性能优良的锂离子电池正极材料。结构和形貌表征结果显示:石墨烯/LiCo0.03Fe0.97PO4复合材料具有三维导电网络结构,颗粒在石墨烯片层间生长均匀,粒径在200nm左右。电化学测试结果显示:石墨烯/LiCo0.03Fe0.97PO4复合材料具有高的可逆比容量和优异的循环倍率性能。2.0~4.0V充放电下0.1C时的首次放电比容量为159mA·h·g-1,在10.0C下首次放电比容量也有74mA·h·g-1;0.5C下循环100次,比容量保持率为99.7%。石墨烯/LiCo0.03Fe0.97PO4复合材料电化学性能提高的原因主要为Co2+掺杂和石墨烯包覆的协同作用。  相似文献   

16.
为了提高CoFe2O4作为锂离子电池负极材料的综合电化学性能,将其与高导电性的碳纤维进行复合。通过静电纺丝及低温碳化制备了均匀镶嵌CoFe2O4纳米颗粒的碳纳米纤维(CoFe2O4@CNFs)柔性复合膜,使用XRD、TG、Raman、SEM、TEM、CV、GCD和EIS等对复合物进行表征,着重研究了CoFe2O4含量对其储锂性能的影响。该复合膜直接用作自支撑锂离子电池负极时表现出较好的电化学性能。CoFe2O4的引入显著提高了碳纳米纤维膜的电化学性能,随着CoFe2O4含量的增加,CoFe2O4@CNFs电极的比容量先增加后减小,CoFe2O4含量约为33.3%(w/w)的CoFe2O4@CNFs...  相似文献   

17.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

18.
Co3O4由于较高的理论容量近年来被视为锂离子电池新型负极材料的热门候选之一,然而其较差的电导率和循环性能制约了其进一步发展。以ZIF-8@ZIF-67为自模板,三聚氰胺和g-C3N4为碳源,通过碳化和氧化处理制备了碳纳米管和石墨烯作为导电桥梁和外壳的Co3O4/C三维导电网络。颗粒纳米化的策略和锌的高温挥发造孔使其在0.5、2 A/g的电流密度下循环200、800圈后仍具有1 139.7、1 002.1 mAh/g的比容量,从0.2 A/g逐渐增大充放电的电流密度至10 A/g又恢复到0.2 A/g后比容量仍有初始容量的94.9%。该网络结构和同类材料相比表现出较为优异的循环和倍率性能。  相似文献   

19.
单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr2O3/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心球(MSHSs)中.得益于Cr2O3/C基体的体积变化缓冲能力与优异的结构稳定性,将Si纳米颗粒封装在MSHSs中可以有效地提高其电化学性能.合理的结构设计赋予了Si/Cr2O3/C三组分复合材料高的可逆容量(在100 mA g-1的电流密度下,比容量为1351 mA h g-1)和稳定的循环性能(在500 mA g-1的电流密度下,循环300次后比容量保持在716 mA h g-1).这一工作提出了一种多壳层空心结构设计的新思路,以解决硅基负极材料循环性差的瓶颈.  相似文献   

20.
采用纳米结构化和碳复合这两种方法对氧化铁材料进行结构与功能化设计。首先通过高温煅烧普鲁士蓝立方块制备得到多孔氧化铁立方块 (Fe2O3), 再进一步使用葡萄糖为原料在氧化铁立方块表面包覆无定形碳层 (C@Fe2O3)。同时, 利用形貌、物相和电化学性能测试等表征手段对该多孔铁碳基金属有机骨架 (MOF) 材料的制备和锂电池存储性能进行研究。研究结果表明, 对Fe2O3进行纳米结构化设计后, 其锂存储性能明显高于普通Fe2O3立方块的比容量。进一步使用无定形碳包覆后, 材料的导电性明显提升且在充放电过程中材料的体积效应得到缓解。该C@Fe2O3立方块作为锂电负极材料在100次循环后比容量达到598 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号