首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用直流电弧放电法制备出一种三维石墨烯纳米球材料。采用扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱和X射线衍射光谱(XRD)等测试方法对三维石墨烯纳米球的形貌和结构进行了表征和研究。通过交流阻抗(EIS)、恒流充放电和循环稳定性测试等电化学测试手段来研究三维石墨烯纳米球作为锂离子电池负极材料的电化学性能。结果表明, 在电流密度为0.05 A/g下, 三维石墨烯纳米球作为锂离子电池负极材料的首次放电容量为485.9 mAh/g, 高于炭黑作负极的放电容量(401 mAh/g); 当电流密度为1 A/g时, 三维石墨烯纳米球负极材料仍然具有185.4 mAh/g的放电容量。在电流密度分别为0.5 A/g和2.5 A/g下, 充放电循环100次以后, 三维石墨烯纳米球的比容量几乎没有衰减, 这表明三维石墨烯纳米球作为锂离子电池的负极材料比炭黑具有更大的容量, 同时具有优异的循环稳定性。  相似文献   

2.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

3.
通过两步法制备了TiS_2纳米片多孔负极材料。以钛块为钛源,采用直流电弧等离子体法在H_2与Ar的混合气氛中制备TiH_(1.924)纳米粒子作为前驱体,与升华硫共混加热硫化得到TiS_2纳米片多孔负极材料。对材料进行X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、拉曼(Raman)等表征,XRD与Raman结果显示得到晶化完全的TiS_2纳米材料;TEM与SEM结果表明TiS_2微观形貌呈纳米片状,纳米片沿空间任意方向生长形成多孔结构。以TiS_2纳米片多孔结构作为锂离子电池负极材料研究其电化学储锂性能,500 mA/g电流密度下循环时,其首次充放电比容量分别为816.0、1 193.0 mAh/g,50次循环后,容量仍保持550 mAh/g;在5 A/g的高电流密度下仍维持有100 mAh/g的容量,表现出优异的循环稳定性和充放电可逆性。  相似文献   

4.
过渡金属硫化物作为锂电池负极材料具有极高比容量,但其制备的电极普遍存在导电性差、体积变化大等问题,本研究设计了一种新型的自支撑CuS/SnS2镂空片状锂电池负极材料,以导电碳布作为基底,生长包覆CuS/SnS2镂空纳米片,具备特殊的纳米包覆结构及双金属协同效应,使其在保持较高比容量的同时具备良好的循环稳定性,整体电化学性能优异。研究不同Cu/Sn含量对CuS/SnS2负极材料电化学性能的影响,最佳配比的CuS/SnS2负极材料在0.2 A·g?1电流密度下循环50次后比容量为1480 mAh·g?1,库伦效率稳定在99.5%,在2 A·g?1电流密度下循环200次后比容量仍能保持在697 mAh·g?1,库伦效率为99.8%。   相似文献   

5.
《功能材料》2021,52(7)
通过牺牲模板法制备了中空立方Cu_2S锂离子电池负极材料,采用X射线衍射(XRD)、场发射式扫描电镜(FESEM)、透射电子显微镜(TEM)以及物理吸附仪对样品表征。循环伏安曲线(CV)、交流阻抗谱(EIS)及恒电流充放电曲线分析电化学性能。研究结果显示,该电极材料展现了优异的电化学性能,在0.5 A/g的电流密度下,经过350次循环后,保持448 mAh/g的可逆比容量。中空纳米结构不仅能够为体积膨胀提供缓冲空间,而且便于电解液的浸润,缩短离子扩散路径。同时,使用醚类电解液对该材料具有更好的兼容性,显示出更高的电化学可逆性。  相似文献   

6.
石墨烯/金属氧化物锂离子电池负极材料的研究进展   总被引:1,自引:1,他引:0  
黄承焕  涂飞跃  覃事彪  周有元 《材料导报》2014,(17):136-140,144
石墨烯作为锂离子电池负极材料时,比克容量是石墨的两倍,但是纯石墨烯因其在充放电过程中团聚,导电循环性能差。为了延长石墨烯的循环寿命,一种有效的方法是在石墨烯中加入过渡金属氧化物(CoOx,CuOx,NiOx,FeOx和MnOx等)。这些过渡金属氧化物比克容量高(700~1000mAh/g),但是在充放电过程中发生体积膨胀,导致其循环性能差。过渡金属氧化物与石墨烯复合后,能够弥补彼此的缺点,具有优异的电化学性能。综述了石墨烯/过渡金属氧化物复合物在锂离子电池负极材料上的应用,并研究了石墨烯加入后对复合材料的性能提升的原因。  相似文献   

7.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

8.
NiO作为过渡金属氧化物代表,具有能量密度较高、成本低的优点,在锂离子电池负极材料的应用中引起了广泛关注。通过海藻酸钠与金属离子的自主交联反应,以及碳化、氧化过程,制备了低成本的多孔纳米NiO/C复合材料。得到的复合材料中,NiO纳米颗粒分散均匀且被石墨化碳层包覆,并嵌入多孔相互连通的碳基体中,在提升复合材料整体导电性的同时抑制了活性材料在电化学反应中的体积膨胀。将其用作锂离子电池负极材料时,NiO/C复合材料在0.1,1 A/g的电流密度下分别具有608.2,307.2 mAh/g的比容量,并且在0.1 A/g电流密度下经过100圈循环后仍保持448 mAh/g的比容量,显示出优良的循环稳定性。优良的电化学性能充分显示出NiO/C复合材料在锂离子电池负极材料中的应用潜能。  相似文献   

9.
硅负极材料因具有较高的理论容量(Li22Si5合金相对应4 200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1 136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。  相似文献   

10.
先用直流(DC)电弧法制备TiH1.924纳米粉作为前驱体,再用固-气相反应制备了片状结构的TiS3纳米粉体。使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、拉曼光谱分析和性能测试等手段对其表征,研究了TiS3纳米片的结构和将其用作负极的锂离子电池的性能。结果表明:TiS3纳米片具有特殊的片状结构,其厚度约为35 nm。将TiS3纳米片用作负极的锂离子电池具有良好的电化学性能,在500 mA/g电流密度下循环300圈后其容量仍保持在430 mAh/g。以5 A/g的大电流密度放电其比容量为240 mAh/g,电流密度恢复到100 mA/g其放电比容量稳定在500 mAh/g。TiS3良好的倍率性能,源于其特殊的纳米片状结构。这种单层片状结构,能较好地适应电极材料在大电流密度多次放电/充电过程中产生的应变引起的体积变化,使其免于粉碎。  相似文献   

11.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

12.
李文娟  张楚虹 《材料导报》2016,30(Z2):1-4, 14
以维生素C(VC)为还原剂,通过溶剂热还原法制备了纳米二氧化锡/三维大孔石墨烯复合负极材料(SnO_2/3DGr)。SEM和TEM测试表明,SnO_2/3DGr具有均匀分布的微米级孔隙,其中SnO_2晶粒尺寸为6~8nm,且均匀分布在石墨烯片层表面。电化学测试表明所制备的SnO_2/3DGr复合电极材料具有优异的电化学性能,该材料在电流密度为100mA/g时,循环100周之后仍然具有1678mAh/g的可逆比容量,在极高电流密度5A/g下,仍然保持405mAh/g的可逆比容量,表现出非常优异的循环稳定性和倍率性能。该材料独特的三维大孔结构以及SnO_2与石墨烯的协同作用,很好地抑制了SnO_2在循环过程中的体积效应,大大改善了SnO_2负极材料的电化学性能。  相似文献   

13.
因具有较短的锂离子扩散路径、大的比表面积等优势,球形碳材料在锂离子电池负极材料中展露出良好的应用前景。研究以新疆库车产煤为原料,采用电弧放电法及化学活化法制备出了具有多孔结构的煤基球形碳。通过X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱(Raman)、氮气吸脱附法和恒电流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明,在100 m A/g的电流密度下,煤基球形多孔碳的首次放电比容量可达到1188.9 mAh/g,远高于商业石墨负极372 mAh/g的理论比容量。此外,该材料还表现出了良好的循环稳定性,经历200圈循环后的放电比容量为844.9 mAh/g。煤基球形多孔碳优异的电化学性能得益于活化过程所产生的分级孔道结构能为锂离子提供更多储存空间,从而提高了电极的容量及循环稳定性。  相似文献   

14.
采用高温固相法制备CrNbO_4,并首次研究其作为锂离子电池负极材料的电化学性能。使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)测试和电化学交流阻抗测试(EIS)对材料的结构、形貌和电化学性能进行表征。样品CrNbO_4在0.001~3.0V电压区间,电流密度为16 mA/g时,充放电50次后放电容量可以保持在63.5mAh/g。通过球磨,CrNbO_4的首次放/充电容量由212.9/100.9 mAh/g提高到572.3/343.5mAh/g,同时电流密度提高10倍,充放电50次后改性样品的放电容量仍可维持81.3mAh/g,有效提高了电化学性能。  相似文献   

15.
嵌入型过渡金属氧化物因具有安全的工作电压、高比容量和快速的嵌锂能力而受到广泛关注.但低本征电导率特性严重影响其作为锂电负极材料的寿命和性能.本文通过简便易行、可规模化放大的二氧化碳热处理方法构筑了具有新型嵌覆型碳结构的Nb2O5/C纳米杂化材料.在控制碳含量的前提下,实现了颗粒聚集体内部表面可控碳包覆.以嵌覆型碳结构的Nb2O5/C纳米杂化材料为负极组装的锂离子电池在40 mA g(-1)电流密度下容量可达387 mA hg(-1),而在200 mA g(-1)电流密度下循环500次后,容量保持率在92%以上.采用电化学滴定、差分电化学质谱(DEMS)等方法对嵌覆型五氧化二铌/碳纳米杂化材料脱嵌锂动力学过程以及产气行为进行了研究.本文提出的嵌覆型碳结构有望为高性能嵌入型过渡金属氧化物的结构设计提供参考.  相似文献   

16.
以ZnCl2和FeCl3.6H2O为原料, 通过溶剂热法制备了尖晶石型ZnFe2O4材料, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶红外光谱(FT-IR)和恒流充放电测试技术对材料的结构、形貌及电化学性能进行了表征。结果表明, 合成的材料为纳微多孔结构, 其颗粒粒径约为250 nm, 以50 mA/g的电流密度充放电时, 可逆比容量为933.1 mAh/g, 经过100次循环后, 比容量为813.5 mAh/g, 比容量保持率高达87.2%, 表现出优异的循环稳定性能。当电流密度增大到400 mA/g时, 其比容量约为355 mAh/g, 表现出较高的倍率性能。采用该法制备得到的纳米ZnFe2O4具有比容量高、循环稳定好等优点, 是一种具有较强应用前景的锂离子电池负极材料。  相似文献   

17.
因具有较短的锂离子扩散路径、大的比表面积等优势, 球形碳材料在锂离子电池负极材料中展露出良好的应用前景。研究以新疆库车产煤为原料, 采用电弧放电法及化学活化法制备出了具有多孔结构的煤基球形碳。通过X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱(Raman)、氮气吸脱附法和恒电流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明, 在100 mA/g的电流密度下, 煤基球形多孔碳的首次放电比容量可达到1188.9 mAh/g, 远高于商业石墨负极372 mAh/g的理论比容量。此外, 该材料还表现出了良好的循环稳定性, 经历200圈循环后的放电比容量为844.9 mAh/g。煤基球形多孔碳优异的电化学性能得益于活化过程所产生的分级孔道结构能为锂离子提供更多储存空间, 从而提高了电极的容量及循环稳定性。  相似文献   

18.
以一氧化硅、蔗糖及天然石墨为原料, 通过高能球磨和热解工艺制备了电化学性能优异的SiO/C/G复合负极材料。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合材料的物相和形貌进行了表征。所制备的复合材料中, 纳米SiO颗粒(<50 nm=被无定形碳粘结并均匀分散在石墨鳞片上。电化学性能测试表明, 该复合材料100次循环后, 可逆容量高达1108.9 mAh/g, 容量保持率为103.8%。优异的电化学性能主要归因于纳米SiO颗粒在无定形碳基体中的均匀分布、无定形碳基体的缓冲作用和石墨相对复合材料导电性能的改善。  相似文献   

19.
以偏钛酸粉末作为钛源,制备钛酸锂(Li4Ti5O12)纳米材料,Li4Ti5O12由含锂过氧化钛配合物分解自组装后经煅烧结晶而得。采用X射线衍射、扫描电子显微镜、氮气吸附-脱附和恒流充放电测试对材料结构、形貌和电化学性能进行表征。结果表明:水体系下,锂钛摩尔比为4∶5、于600℃煅烧5h得到的Li4Ti5O12纳米球颗粒粒径在500nm左右,且具有丰富的孔隙,比表面积达到22.947m2/g;在电流密度4000mA/g条件下,比容量为157mAh/g,电流密度500mA/g下循环400次放电容量保持率为95.2%。表明水体系自组装形成的Li4Ti5O12纳米负极材料可以缩短锂离子迁移距离,其多孔性可以增大电解液与电极活性材料的接触面积,使离子电子传输速率同时得到提高,从而获得优异的电化学性能。  相似文献   

20.
碳包覆策略是能有效解决锂离子电池负极用过渡金属氧化物(TMO)材料在充放电过程中体积膨胀/收缩造成的粉化难题的一种有效途径。采用生物基可食用冰粉作为碳源与草酸高铁铵的水凝胶作为前驱物,经一步高温热解制备氮掺杂的冰粉基碳包覆Fe3O4,采用XRD、SEM、TEM、XPS、TGA、拉曼光谱、恒电流充放电测试、循环伏安和电化学阻抗谱等方法对样品的形貌、结构和电化学性能进行研究。结果表明,该方法可快速大量制备氮掺杂碳包覆Fe3O4多孔复合材料(N-C@Fe3O4),通过调整原料配比和热处理条件,获得优异的电化学性能。N-C@Fe3O4-5作为锂离子电池负极材料具有良好的循环稳定性(在0.1 A/g电流密度下循环下80圈保持762.74 mAh/g比容量)和较高的倍率性能。相关机理研究表明N-C@Fe3O4复合材料良好倍率性能主要来源于赝电容容量的贡献。复合材料优异的电化学性能是...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号