首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical energy storage systems are considered as one of the most viable solutions to realize large-scale utilization of renewable energy. Among the various electrochemical energy storage systems, flow batteries have increasingly attracted global attention due to their flexible structural design, high efficiencies, long operating life cycle, and independently tunable power and energy storage capacity. Although promising, a number of challenges including the high cost of flow battery materials hinder the broad market penetration of flow battery technology. Polymer electrolyte membrane, as a key component in flow batteries providing pathways for charge carriers transport and preventing electrolytes crossover, takes over 25% of the entire cost of the battery system. Apparently, the membrane not only plays pivotal roles in the operation characteristics of a flow battery, but also largely influences the financial cost of the battery system. To provide insights and better understanding of membranes towards enhancing their performance and cost-effectiveness, we therefore present recent advances and research outcomes on the development of polymer electrolyte membranes as well as their applications in flow batteries, particularly all-vanadium redox flow batteries. Various aspects of polymer electrolyte membranes including functional requirements, characterization methods, materials screening and preparation strategies, transport mechanisms, and commercialization progress are presented. Finally, perspectives for future trends on research and development of polymer electrolyte membranes with relevance to flow batteries are highlighted.  相似文献   

2.
In this work, a novel aqueous electrolyte system consisting of cobalt and vanadium for redox flow battery was prepared to increase the cell voltage of the system for the first time in the literature. Electrolyte systems were characterized by using of cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy to determine the effects of sulfuric acid and active ion concentration on the performance of the battery. Optimum sulfuric acid concentration was determined as 4.0 M for anolyte and catholyte. The effect of diffusion on mass transfer mechanism was higher than that of adsorption in each electrolyte of the flow battery system. Cyclic charge-discharge tests were carried out for the prepared novel electrolyte system. Discharge capacities of the electrolyte were determined as 430.1, 417.4, and 428.7 mAh for first cycle, second cycle, and third cycle, respectively. The cell potential of the redox flow battery in the electrolyte system during the charging process increased to 2.35 V which was also relatively higher than those of aqueous vanadium redox flow battery and aqueous iron flow battery. Obtained redox flow battery composition with its high cell potential can bring a new approach for the different application areas in the electrochemical energy storage.  相似文献   

3.
Graphene, a material with exceptional properties, has dragged an attention worldwide due to its applicability in wide range of applications particularly in energy sector. With the growing human population, an intense need has aroused to explore alternate ways to meet upsurge demand of energy, where the sources of non-renewable energy are limited. Energy conversion and storage devices e.g. fuel cell, electrolyzer, batteries use polymer electrolyte membranes (PEM) as electrolyte/separator, as an important component. PEM plays a vital role in such devices, which can be prepared by functional polymers. Various PEMs consisting of various fillers have been developed to fulfill the needs of energy devices. Graphene oxide (GO), a fascinating material, has stimulated interest among researchers due to its various applications including energy based devices. This review mainly deals with graphene oxide (GO) based polymer electrolyte membranes and their applications in energy devices. Advancements in the development of GO membranes, interaction with polymer matrix and their electrochemical properties has been summarized. This review provides a profound insight about graphene based polymer electrolyte membranes for energy related applications including polymer electrolyte membranes fuel cell (PEMFC), vanadium redox flow battery (VRB) and Li-ion battery.  相似文献   

4.
钒电池系统主要由隔膜,极板,电极,正负极电解液储液罐和循环泵等几部分构成.充放电过程中,正负极电解液中钒离子的价态发生变化,实现电能的存储和释放.本工作对钒电解液浓度和温度对电化学循环伏安行为的影响进行了研究.结果表明,在同一温度下,随着钒离子浓度的增大,参加电化学反应的自由钒离子数量增多,可以产生更大的反应电流;同时,随着钒离子浓度的增加,电化学反应的可逆性变差;对于同一浓度下的钒电解液,氧化反应和还原反应的峰值电流值随着温度的升高而增大;适当提高钒电解液温度,可提高电化学反应速率,提高产生的电流密度.对同一浓度钒电解液而言,硫酸浓度对其电化学性能也有影响.实验证明,硫酸浓度为3 mol/L时,钒电解液性能较好.  相似文献   

5.
Ambient operation of Li/Air batteries   总被引:1,自引:0,他引:1  
In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ∼20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg−1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (∼70%). Lithium metal anodes and KB-carbon account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ∼20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products.  相似文献   

6.
During operation of redox flow batteries, differential transfer of ions and electrolyte across the membrane and gassing side reactions during charging, can lead to an imbalance between the two half-cells that results in loss of capacity. This capacity loss can be corrected by either simple remixing of the two solutions, or by chemical or electrochemical rebalancing. In order to develop automated electrolyte management systems therefore, the state-of-charge of each half-cell electrolyte needs to be known. In this study, two state-of-charge monitoring methods are investigated for use in the vanadium redox flow battery. The first method utilizes conductivity measurements to independently measure the state-of-charge of each half-cell electrolyte. The second method is based on spectrophotometric principles and uses the different colours of the charged and discharged anolyte and catholyte to monitor system balance and state-of charge of each half-cell of the VRB during operation.  相似文献   

7.
Small, portable electronic devices need power supplies that have long life, high energy efficiency, high energy density, and can deliver short power bursts. Hybrid power sources that combine a high energy density fuel cell, or an energy scavenging device, with a high power secondary battery are of interest in sensors and wireless devices. However, fuel cells with low self-discharge have low power density and have a poor response to transient loads. A low capacity secondary lithium ion cell can provide short burst power needed in a hybrid fuel cell–battery power supply. This paper describes the polarization, cycling, and self-discharge of commercial lithium ion batteries as they would be used in the small, hybrid power source. The performance of 10 Li-ion variations, including organic electrolytes with LixV2O5 and LixMn2O4 cathodes and LiPON electrolyte with a LiCoO2 cathode was evaluated. Electrochemical characterization shows that the vanadium oxide cathode cells perform better than their manganese oxide counterparts in every category. The vanadium oxide cells also show better cycling performance under shallow discharge conditions than LiPON cells at a given current. However, the LiPON cells show significantly lower energy loss due to polarization and self-discharge losses than the vanadium and manganese cells with organic electrolytes.  相似文献   

8.
The electrochemical behavior of propylene carbonate (PC)-based electrolytes with and without butyl sultone (BS) on graphite electrode and the performance of lithium ion batteries with these electrolytes were studied with cyclic voltammetry (CV), energy dispersive spectroscopy (EDS), as well as density functional theory (DFT) calculation. It is found that the co-insertion of PC with lithium ions into graphite electrode can be inhibited to a great extent by adjusting the composition of solvent in electrolytes. With the application of PC in the electrolyte without any additive, the discharge capacity of lithium ion battery is improved under high temperature or low temperature, however it decays under room temperature compared with the battery without PC. This drawback can be overcome by using BS as a solid electrolyte interphase (SEI) forming additive. BS has a lower LUMO energy and can be more easily electro-reduced than other components of solvent in electrolyte on a graphite electrode, forming a stable SEI film. With the application of BS in the electrolyte, the discharge capacity and cyclic stability of lithium ion battery is improved significantly under room temperature.  相似文献   

9.
One of the most prominent energy storage technologies which are under continuous development, especially for mobile applications, is the Li‐ion batteries due to their superior gravimetric and volumetric energy density. However, limited cycle life of Li‐ion batteries inhibits their extended use in stationary energy storage applications. To enable wider market penetration of Li‐ion batteries, detailed understanding of the degradation mechanisms is required. A typical Li‐ion battery comprised of an active material, binder, separator, current collector, and electrolyte, and the interaction between these components plays a critical role in successful operation of such batteries. Degradation of Li‐ion batteries can have both chemical and mechanical origins and manifests itself by capacity loss, power fading or both. Mechanical degradation mechanisms are associated with the volume changes and stress generated during repetitive intercalation of Li ions into the active material, whereas chemical degradation mechanisms are associated with the parasitic side reactions such as solid electrolyte interphase formation, electrolyte decomposition/reduction and active material dissolution. In this study, the main degradation mechanisms in Li‐ion batteries are reviewed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
本文回顾了环三磷腈及其衍生物的合成,阐述了其在锂离子电池电解液,正负极材料等关键材料方面的应用研究进展,并进行了相应的展望.随着锂离子电池在高容量动力及储能领域中的广泛应用,电池的安全性问题日益凸显,材料安全性是电池安全性的基本保证.磷腈化合物由于其特殊的组成和结构,具有高效阻燃与电化学稳定性,在用于改善锂离子电池安全性方面受到越来越广泛的关注.在锂离子电池电解液添加剂和共溶剂的研究中发现,磷腈化合物不仅可以改善电解液的热稳定性和阻燃性能,还可以提高电池的充放电电压和循环稳定性;同时,也可以作为正负极材料的重要组分,改善电极材料的安全性.在锂离子电池安全性领域中具有较好的研究价值和实用意义.  相似文献   

11.
近年来,可充电电池以其成本低廉、操作简单、安全环保等优点引起了不少研究者的关注。与锂离子电池相比,钠、钾、镁、锌和铝等离子电池在成本和安全等方面表现出独特的优势,为电池型储能系统(BESS)和电动汽车(EVs)的发展提供了新的思路。正极材料作为离子电池的重要组成之一,其性能的优劣将直接影响整个电池系统的工作状况。本文将介绍离子电池正极材料在容量、循环寿命和能量密度方面的最新进展,以及离子的储存机制。此外,探讨了材料结构和性能间的关系,总结了各种改善离子储存性能的方法,从而使低成本的离子电池更接近可持续大规模储能系统的应用。  相似文献   

12.
锂二次电池因其具有能量密度高、循环寿命长、无记忆效应、无污染等优点,使得其在便携式消费电子产品、电动汽车、能量储存等领域具有广泛的应用前景。目前,锂二次电池的能量密度和安全性是当今世界的研究热点。但对于传统液态电解质的锂离子电池而言,尽管从材料、模组、电源管理、热管理、系统设计等各个层面均采取了多种改进措施,然而高能量密度电芯的安全性问题依然突出,热失控问题难以彻底避免。因此,为了提高锂电池的安全性,发展理论上不易燃的固态锂电池是解决锂电池安全问题的必由途径。本工作比较了传统液态锂离子电池与固态锂电池结构特征,总结了其各自优缺点,进一步深入剖析了传统液态锂离子电池安全问题产生的根本原因,提出了解决锂离子电池安全性问题的最佳方案,并通过对自主研发的系列容量固态锂(离子)电池的安全性能进行测试,证实了固态锂电池的高安全特性。  相似文献   

13.
固态聚合物锂电池具有高能量密度和高安全性的优点,有望解决新能源汽车的续航里程焦虑和安全问题。但是,现有的固态聚合物锂电池存在容量衰减快、过充、产气、内短路、日历失效等电池失效问题。而且,由于聚合物电解质不耐辐照,其较强的界面黏附性使得电极/电解质界面难以剥离,导致缺乏合适的表征技术深入研究固态聚合物锂电池的失效机制,这极大的限制了科学家对电池失效机制的深入理解,制约了电池失效解决方案的发展。因此,本文从锂枝晶生长、正极结构演变与机械失效、界面微结构演变和界面反应、聚合物电解质结构变化的角度出发,回顾了固态聚合物锂电池失效机制及其表征技术的研究进展,阐述了固态聚合物锂电池失效机制的研究思路。  相似文献   

14.
The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ $0.10 kW?1 h?1. There is also a low‐level utility scale acceptance of energy storage solutions and a general lack of battery‐specific policy‐led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas‐ and diesel‐fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Based on a 1D electrochemical model, a series of galvanostatic charge processes of lithium ion batteries with different initial electrolyte salt concentrations are simulated and investigated. In light of the simulation results, it is found that many electrochemical characters, including charge curve, end‐of‐charge salt concentration, anode potential, and reaction depth distribution, can all be affected by initial electrolyte salt concentration. Meanwhile, the lithium plating phenomenon commonly occurring during charge is studied with batteries of different salt concentrations during overcharge. A corresponding solution, changing the thickness ratio of anode to cathode, is proposed, which can also be used to extend the charging capacity. Overall, this study gives better understanding of the relevance between electrochemical behaviors of charging battery and initial electrolyte salt concentration, thus emphasizes the important role of electrolyte salt concentration in the performance and health of lithium ion battery. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
随着电化学储能市场的蓬勃发展,电化学储能电池本身的安全性越来越受到关注,如何最大程度地降低储能电池组火灾风险是电化学储能大规模应用时亟需解决的问题。本文综述目前国内外针对锂离子电池热失控已有的研究成果,包括磷酸铁锂电池的燃烧特性、火灾危险等级以及在储能电站预警系统中应用的锂离子电池热失控及热扩散参数;梳理不同灭火剂对电池火灾的灭火效率;同时总结电化学储能电站的灭火系统选择,为电网储能工程应用提供参考,有效支持锂离子储能电池的大规模工程需求。  相似文献   

17.
Electrospun carbon fibers are featured with abundant electroactive sites but large mass transport resistances as the electrodes for vanadium redox flow battery. To lower mass transport resistances while maintaining large specific areas, electrospun carbon fibers with different structural properties, including pore size and pore distribution, are prepared by varying precursor concentrations. Increasing the polyacrylonitrile concentration from 9 wt% to 18 wt% results in carbonized fibers with an average fiber diameter ranging from 0.28 μm to 1.82 μm. The median pore diameter, in the meantime, almost linearly increases from 1.32 μm to 9.05 μm while maintaining the porosity of higher than 82%. The subsequent electroactivity evaluation and full battery testing demonstrate that the mass transport of vanadium ions through the electrode with larger fiber diameters are significantly improved but not scarifying the electrochemical activity. It is shown that the flow battery with these electrodes obtains an energy efficiency of 79% and electrolyte utilization of 74% at 300 mA cm−2. Hence, all these results eliminate the concern of mass transport when applying electrospun carbon fibers as the electrodes for redox flow batteries and guide the future development of electrospun carbon fibers.  相似文献   

18.
全钒液流电池因其安全可靠,使用寿命长,环境友好,电池均匀性好,可实时直接监测其充放电状态等特点,已成为规模储能技术领域的重要设备.本文详细分析了全钒液流电池的产业化挑战,从而提出主要技术发展方向.另外,重点对中国科学院大连化学物理研究所和大连融科储能技术发展有限公司合作团队在电堆,电池系统和应用示范方面的最新进展进行了总结.  相似文献   

19.
电池实际可放出的瓦时容量与实际可放出的最大瓦时容量的比值定义为荷电状态,准确测定荷电状态对储能应用十分重要。本文从理论和应用角度,讨论全钒液流电池荷电状态的理论概念、工程定义和主要影响因素;提出2种确定最大瓦时容量的方法,其中实测法准确度更高,包含钒离子跨膜迁移、水分子扩散、负极电解液析氢和被氧化的信息,用于表征储能系统的荷电状态具有实际价值;阐述最大瓦时容量、电化学瓦时容量和理论瓦时容量的区别与联系。所提出的荷电状态确定方法,能够用于全钒液流电池SOC的估计。  相似文献   

20.
Proton exchange membrane is a basic element for any redox flow battery. Nafion is the only commercial available proton exchange membrane used in different electro-chemical energy systems. High cost restrict it's used for energy generation devices. In present work, we synthesised styrene divinylbenzene based composite proton exchange membranes (PEMs) with varying sulfonated graphene oxide (sGO) content for redox flow battery (RFB). Synthesized copolymer PEMs were analyzed in terms of their chemical structure with the help of FT-IR spectroscopy to confirm desired functional groups at appropriate position. Electrochemical characterization was performed in terms proton-exchange capacity, protonic conductivity and water uptake. Membrane shows adequate proton exchange capacity with good proton conductivity. Vanadium ion permeability was also tested for the prepared membrane to assess capability for vanadium redox flow battery (VRFB) in contrast with commercially available Nafion 117 PEM. Higher VO+2 ion cross-over resistance was found for CEM-4 with 7.17 × 10−7 cm2 min−1 permeability, which is about half of the CEM-1. Further CEM-4 was also evaluated for charging-discharging phenomenon for single cell VRFB. The values of columbic, voltage and energy efficiency for VRFB confirms prepared membrane as a good candidate for redox flow battery. Composite PEM also shows better mechanical and thermal stability. Results indicates that synthesized composite membrane can be used in vanadium redox flow battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号