首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal energy storage (TES) is regarded as one promising technology for renewable energy and waste heat recovery. Among TES technologies, sorption thermal energy storage (STES) has drawn burgeoning attention due to high energy storage density, long-term heat storage capability and flexible working modes. Originating from STES system, resorption thermal energy storage (RTES) system is established and investigated for recovering the heat in this paper. The system is mainly composed of three high temperature salt (HTS) unit beds; three low temperature salt (LTS) unit beds, valves and heat exchange pipes. Working pair of MnCl2–CaCl2–NH3 is selected for the RTES system. 4.8 kg and 3.9 kg MnCl2 and CaCl2 composite adsorbents are filled in the adsorption bed. Results indicate that the highest thermal storage density is about 1836 kJ/kg when the heat charging and discharging temperature is 155 °C and 55 °C, respectively. Volume density of heat storage ranges from 144 to 304 kWh/m3. The highest ratio of latent heat to sensible heat is about 1.145 when the discharging temperature is 55 °C. The energy efficiency decreases from 97% to 73% when the discharging temperature increases from 55 to 75 °C.  相似文献   

2.
This paper presents seasonal‐energy storage of solar energy for the heating of buildings. We distinguish several types of seasonal storage, such as latent, sensible, and chemical storage, among which the thermochemical storage is used and analysed in this research. In the first part, a laboratory heat‐storage tank, which was made in the laboratory for heating, sanitary, and solar technology and air conditioning from the Faculty of Mechanical Engineering, University of Ljubljana, Slovenia, was presented. The experimental model was tested for charging and discharging mode. Two types of numerical models for sorption thermal‐energy storage exist, which are microscale and macroscale (integral). For microscale analysis, the analysis system (ANSYS) model can be used to simulate the behaviour in the adsorption reactor. On macroscale or integral scale, TRaNsient SYStem (TRNSYS) model was used to perform the operation of the storages on the yearly basis. In the second part the simulation of the underfloor heating system operation with a built‐in storage tank was carried out for two locations, Ljubljana and Portoro?. Furthermore, the comparison between a thermochemical and sensible‐heat storage was performed with TRNSYS and Excel software. In this comparison, the focus was on the surface parameters of the SCs and volume of the thermal‐storage tank for the coverage of the energy demand for selected building. With this analysis, we would like to show the advantage of the thermochemical storage system, to provide greater coverage of the energy demand for the operation of the building, compared with the seasonal sensible‐heat storage (SSHS). Such a heat‐storage technology could, in the future, be a key contributor to the more environmentally friendly and more sustainable way of delivering energy needs for buildings.  相似文献   

3.
Thermal energy storage(TES)is a key technology for renewable energy utilization and the improvement of the energy efficiency of heat processes.Sectors include industrial process heat and conventional and renewable power generation.TES systems correct the mismatch between supply and demand of thermal energy.In the medium to high temperature range(100~1000℃),only limited storage technology is commercially available and a strong effort is needed to develop a range of storage technologies which are efficient and economical for the very specific requirements of the different application sectors.At the DLR's Institute of Technical Thermodynamics,the complete spectrum of high temperature storage technologies,from various types of sensible over latent heat to thermochemical heat storages are being developed.Different concepts are proposed depending on the heat transfer fluid(synthetic oil,water/steam,molten salt,air)and the required temperature range.The aim is the development of cost effective,efficient and reliable thermal storage systems.Research focuses on characterization of storage materials,enhancement of internal heat transfer,design of innovative storage concepts and modelling of storage components and systems.Demonstration of the storage technology takes place from laboratory scale to field testing(5 kW^1 MW).The paper gives an overview on DLR's current developments.  相似文献   

4.
开发中高温储热材料及其制备方法是储热技术发展的关键之一.本文结合中高温储热材料的分类,特点,应用及存在的问题对中高温储热材料的研究进展进行了综述,主要包括显热储热材料,热化学储热材料以及潜热储热材料.探讨了复合结构储热材料及其制备工艺,进一步介绍了其最新研究进展,并对中高温储热材料的下一步研究进行了展望,提出开发高性能纳微复合结构储热材料是未来研究的重点.  相似文献   

5.
The storage of thermal energy in the form of sensible and latent heat has become an important aspect of energy management with the emphasis on efficient use and conservation of the waste heat and solar energy in industry and buildings. Latent heat storage is one of the most efficient ways of storing thermal energy. Solar energy is a renewable energy source that can generate electricity, provide hot water, heat and cool a house, and provide lighting for buildings. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require a large surface area. Hydrated salts have a larger energy storage density and a higher thermal conductivity. In response to increasing electrical energy costs and the desire for better lad management, thermal storage technology has recently been developed. The storage of thermal energy in the form of sensible and latent heat has become an important aspect of energy management with the emphasis on the efficient use and conservation of the waste heat and solar energy in the industry and buildings. Thermal storage has been characterized as a kind of thermal battery.  相似文献   

6.
Because of the unstable and intermittent nature of solar energy availability, a thermal energy storage system is required to integrate with the collectors to store thermal energy and retrieve it whenever it is required. Thermal energy storage not only eliminates the discrepancy between energy supply and demand but also increases the performance and reliability of energy systems and plays a crucial role in energy conservation. Under this paper, different thermal energy storage methods, heat transfer enhancement techniques, storage materials, heat transfer fluids, and geometrical configurations are discussed. A comparative assessment of various thermal energy storage methods is also presented. Sensible heat storage involves storing thermal energy within the storage medium by increasing temperature without undergoing any phase transformation, whereas latent heat storage involves storing thermal energy within the material during the transition phase. Combined thermal energy storage is the novel approach to store thermal energy by combining both sensible and latent storage. Based on the literature review, it was found that most of the researchers carried out their work on sensible and latent storage systems with the different storage media and heat transfer fluids. Limited work on a combined sensible-latent heat thermal energy storage system with different storage materials and heat transfer fluids was carried out so far. Further, combined sensible and latent heat storage systems are reported to have a promising approach, as it reduces the cost and increases the energy storage with a stabilized outflow of temperature from the system. The studies discussed and presented in this paper may be helpful to carry out further research in this area.  相似文献   

7.
An economic evaluation of a latent heat thermal energy storage (LHTES) system for large scale concentrating solar power (CSP) applications is conducted. The concept of embedding gravity-assisted wickless heat pipes (thermosyphons) within a commercial-scale LHTES system is explored through use of a thermal network model. A new design is proposed for charging and discharging a large-scale LHTES system. The size and cost of the LHTES system is estimated and compared with a two-tank sensible heat energy storage (SHTES) system. The results suggest that LHTES with embedded thermosyphons is economically competitive with current SHTES technology, with the potential to reduce capital costs by at least 15%. Further investigation of different phase change materials (PCMs), thermosyphon working fluids, and system configurations has the potential to lead to designs that can further reduce capital costs beyond those reported in this study.  相似文献   

8.
制备了一种Na2SO4.10H2O共晶相变蓄冷材料,其相变温度在8℃左右,可作为空调蓄冷材料。本文主要研究了复合相变体系的热化学性质和材料的相变特性。本研究测定出材料的相变潜热为114.37kJ/kg,固体平均比热容为4.68kJ/(kg.K),液体平均比热容为16.18kJ/(kg.K)。材料的主要成分为Na2SO4.10H2O,NaCl,NH4Cl,羧甲基纤维素(CMC)等,其主要特点是原料来源丰富,潜热和显热蓄冷量较大。  相似文献   

9.
Thermal energy storage has the potential to decarbonize the heating sector, facilitating the use of renewable energy sources, in particular solar thermal energy. In this paper we present a study on thermochemical storage material composed of inorganic salts hosted in the porous matrix of zeolite 13X; we prepared a series of composites containing different amounts of inorganic salts – MgCl2, MgSO4 by impregnation method and we characterized them by multiple experimental techniques: energy storage and adsorption/desorption rates were assessed using simultaneous thermal analysis by coupling thermogravimetric and differential scanning calorimetry, microstructure, and composition were assessed through scanning electron microscopy and energy-dispersive X-ray spectroscopy. Finally, thermal conductivity was measured by laser flash analysis. With our composite material, we achieved an energy density of 400 kJ/kg across the temperature range 30–150°C and a 35% increase in thermal conductivity by adding 1% of multiwall carbon nanotubes. These features make the material an interesting option for thermal storage in buildings. We attribute the behavior of the material to the combination of large zeolite-specific area coupled with the heat of water sorption/hydration of MgCl2, MgSO4.  相似文献   

10.
电制热固体储热系统对可再生能源消纳、能源清洁化利用具有重要意义。电制热固体储热装置的关键参数设计以及经济性分析是提高经济效益的重要手段。因此,本文提出了电制热固体储热装置投资运行费用计算方法。通过对比不同供暖方式所需费用分析了电制热固体储热装置的经济性。同时研究了谷电利用系数对电制热固体储热装置经济性的影响。最后,采用案例分析验证本文所提经济性评估方法的合理性与正确性。本文的研究内容为用户对电制热固体储热装置的选择提供参考。  相似文献   

11.
The multistep sorption‐reaction cycle utilizes heat from several processes, such as absorption, dilution, crystallization reaction, and thermochemical reaction. So, it is very attractive to use multistep sorption technology to improve the performance of temperature transmitter, air conditioning, and heat pump. Different working pairs of silica gel/LiCl, activated carbon/LiCl multiwalled carbon nanotubes/LiCl, and multiwalled carbon nanotubes/CaCl2 are tested and compared. The results show that the water uptake of these compound adsorbents varies with different salt mass fraction. The water uptake goes up dramatically at the crystallization and deliquescence point. Compared with the energy storage performance under the same working conditioning, the activated carbon/LiCl has the best performance, and the possible reason is that the activated carbon has the largest specific surface and the smallest average pore diameter.  相似文献   

12.
Metal hydrides have been demonstrated as energy storage materials for thermal battery applications. This is due to the high energy density associated with the reversible thermochemical reaction between metals and hydrogen. Magnesium iron hydride (Mg2FeH6) is one such material that has been identified as a thermal energy storage material due to its reversible hydrogenation reaction at temperatures between 400 and 600 °C. This study demonstates an automated thermal battery prototype containing 900 g of Mg2FeH6 as the thermal energy storage material with pressurised water acting as the heat transfer fluid to charge and discharge the battery. The operating conditions of the system were optimised by assessing the ideal operating temperature, flow rate of the heat transfer fluid, and hydrogen pressures. Overall, excellent cyclic energy storage reversibility was demonstrated between 410 and 450 °C with a maximum energy capacity of 1650 kJ which is 87% of the theoretical value (1890 kJ).  相似文献   

13.
Thermal characterization of Phase Change Materials (PCMs) based on linear low-density polyethylene (LLDPE), paraffin wax (W) and expanded graphite (EG) is reported in this paper. Investigated PCMs showed high potential for application in energy storage systems.The latent heat, Lm, sensible heat Qsens, and the ability of the prepared PCMs to store and release thermal energy were investigated using specific home-made equipment based on the transient guarded hot plane method (TGHPT). The sensible heat of PCM containing 40 wt.% of paraffin wax was investigated in the temperature range 25–35 °C, they exhibited a drop in Qsens from 31 to 24 J/g depending on the concentration of EG. A similar decrease in sensible heat with increased loading of EG was observed for PCMs containing 50 wt.% of EG.The storage and release of thermal energy during phase change which is associated with the latent heat of the materials were investigated within the temperature range 20–50 °C. PCMs containing 40 wt.% of paraffin wax exhibited latent heat of 36 J/g, whereas the latent heat of PCMs containing 50 wt.% of paraffin wax was 49 J/g. The addition of EG decreased the time needed to melt and solidify PCMs due to increase in thermal conductivity of PCMs with increase in EG content. This behavior was confirmed by the thermal conductivity measurements, where thermal conductivity increased from 0.252 for sample without EG to 1.329 W/m × °C for PCM containing 15 wt.% of EG.The reproducibility of storage and release of thermal energy by PCMs was demonstrated by subjecting them to repeated heating and cooling cycles (over 150 cycles).  相似文献   

14.
Thermal energy storage technologies minimize the imbalance between energy production and demand. In this context, latent heat storage materials are of great importance as they have a higher density of energy storage as compared with the sensible heat storage materials. The present study involves the characterization of energy storage materials using an energy balance cooling curve analysis method. The method estimates the convective heat transfer coefficient in the solidification range to characterize the phase change materials for applications in energy storage. The method is more beneficial than the Computer Aided Cooling Curve analysis methods as it eliminates baseline calculations and the associated fitting errors. Metals (Sn) and salts (KNO3 and NaNO 3) were used in the present work. Phase change characteristics like the rate of cooling, liquidus and solidus temperatures, time for solidification, and enthalpy of phase change were estimated for both metals and salts. It was observed that the energy balance cooling curve analysis method worked very well for metals but not well suited for low conductivity salts. Salts could not be characterized since the thermal gradient existing within the salt sample was not considered in this method.  相似文献   

15.
Energy storage is one of the most important components of renewable energy systems. Among different methods, thermal energy storage (TES) in forms of sensible or latent has been the subject of many studies in the past decades. The main difficulty in optimal design of storage tanks is associated with low thermal conductivity of the storing (solid or phase change) material. In fact, the distribution of thermal energy from a source to the body of storing material poses a volume to point problem which is the subject of constructal theory. Therefore, the objective of the present paper is to investigate the transient behavior of a rectangular thermal energy storage tank equipped with fin configurations optimized for heat conduction based on constructal theory. Results of numerical simulations reveal that the more complex configurations perform better in sensible TES systems; almost as well as what is expected based on analytical steady state solutions. However, because of the convection currents in the melting process of a PCM tank, the final full charging time of the latent systems are approximately the same.  相似文献   

16.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

17.
熔融盐具有液体温度范围宽,黏度低,流动性能好,蒸汽压小,对管路承压能力要求低,相对密度大,比热容高,蓄热能力强,成本较低等诸多优点,已成为一种公认的良好的中高温传热蓄热介质.本文对熔融盐显热蓄热技术原理和发展现状进行了简要概述,包括熔融盐的种类,熔融盐显热蓄热技术的原理,关键技术,研发现状及其在太阳能热发电和间歇性余热利用中的应用.认为开展高温熔融盐传热蓄热介质制备,热性能表征和熔融盐流动与传热性能研究,进而完善整个熔融盐蓄热系统,提高蓄热效率,降低管路腐蚀性,提高系统可靠性仍将是未来熔融盐蓄热技术的研究重点.  相似文献   

18.
以污泥水热解残渣资源化为目标,采用真空吸附法将污泥/木屑水热解的残渣吸附三水乙酸钠制备了复合相变储热材料。对水热解残渣进行了BET和粒径分析的表征,通过同步热分析仪、XRD及水浴中熔化-凝固多循环对复合储热材料的储热能力、相变温度、热循环稳定性等性能参数进行分析。实验结果表明,制备的复合相变储热材料无需添加增稠剂或悬浮剂等助剂,借助污泥残渣本身特有的均匀粒径和细微粒度特性以及木屑挥发分析出对残渣的造孔重整,作为载体可有效改善常规水合物储热材料的相变过冷度和相分离问题。封装尺度对储热材料的相变潜热和稳定性影响较小,100次循环后的潜热实际值与理论计算值(219.8 kJ/kg)相差仅为-0.5%~0.4%,化学组分也未有变化,可见该复合储热材料既具有优良的热稳定性也具有可靠的化学稳定性。  相似文献   

19.
为克服太阳能间断性和不稳定性的缺点进而实现太阳能集热与采暖的能量供需调节和全天候连续供热,提出了基于相变储热的太阳能多模式采暖方法(太阳能集热直接采暖、太阳能集热采暖+相变储热、太阳能相变储热采暖),并在西藏林芝市某建筑搭建了太阳能与相变储热相结合的采暖系统,该系统可根据太阳能集热温度和外界供热需求实现太阳能多模式采暖的自动控制和自动运行。实验研究表明:在西藏地区采用真空管太阳能集热器可以和中低温相变储热器很好地结合,白天储热器在储热过程中平均储热功率为10.63 kW,储热量达到92.67 kW·h,相变平台明显;晚上储热器在放热过程中供热量达85.23 kW·h,放热功率和放热温度平稳,储放热效率达92%,其储热密度是传统水箱的3.6倍,可连续供热时间长达10 h,从而实现了基于相变储热的太阳能全天候连续供热,相关研究结果对我国西藏地区实施太阳能采暖具有一定的指导作用。  相似文献   

20.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号