首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了核反应堆弹簧材料用0Cr20Ni55Mo3Nb5Ti(Inconel-718)镍基合金材料时效强化状态下在150~650 ℃范围内的高温弹塑性特征,并采用多种函数模型对其高温应力-应变实测数据进行了本构关系拟合计算和对比。结果表明:经过970 ℃×1 h,空冷+720 ℃×8 h,炉冷+620 ℃×8 h,空冷的三步法时效强化处理后,Inconel-718合金兼具较高的Rp0.01值和室温伸长率。Boltzmann函数模型对时效强化Inconel-718合金材料在1.5%应变范围内的高温σ-ε实测数据具有良好的拟合效果和预测计算精度,适用于核反应堆弹簧材料的选材和结构设计。  相似文献   

2.
This two part paper presents a comprehensive exercise in modeling dynamics, kinematics and stability in drilling operations. While Part II focuses on the chatter stability of drilling in frequency domain, Part I presents a three-dimensional (3D) dynamic model of drilling which considers rigid body motion, and torsional–axial and lateral vibrations in drilling, and resulting hole formation. The model is used to investigate: (a) the mechanism of whirling vibrations, which occur due to lateral drill deflections; (b) lateral chatter vibrations; and (c) combined lateral and torsional–axial vibrations. Mechanistic cutting force models are used to accurately predict lateral forces, torque and thrust as functions of feedrate, radial depth of cut, drill geometry and vibrations. Grinding errors reflected on the drill geometry are considered in the model. A 3D workpiece, consisting of a cylindrical hole wall and a hole bottom surface, is fed to the rotating drill while the structural vibrations are excited by the cutting forces. The mechanism of whirling vibrations is explained, and the hole wall formation during whirling vibrations is investigated by imposing commonly observed whirling motion on the drill. The time domain model is used to predict the cutting forces and frequency content as well as the shape of the hole wall, and how it depends on the amplitude and frequency of the whirling vibration. The model is also used to predict regenerative, lateral chatter vibrations. The influence of pilot hole size, spindle speed and torsional–axial chatter on lateral vibrations is observed from experimental cutting forces, frequency spectra and shows good similarity with simulation results. The effect of the drill–hole surface contact during drilling is discussed by observing the discrepancies between the numerical model of the drilling process and experimental measurements.  相似文献   

3.
研究了核反应堆弹簧材料用时效强化0Cr20Ni55Mo3Nb5Ti(Inconel-718)合金材料在350 ℃高温下的低周疲劳性能,并采用Manson-Coffin和郑修麟模型对加载应变水平和低周疲劳寿命之间关系进行了拟合计算和对比。结果表明:经过970 ℃×1 h空冷+720 ℃×8 h炉冷+620 ℃×8 h空冷热处理后,Inconel-718合金在350 ℃具有优异的低周疲劳性能。根据郑修麟关系式计算结果,其临界应变疲劳极限约为0.37%,在低于此应变水平条件下,其低周疲劳寿命高于107循环。Manson-Coffin模型由于不包含临界应变疲劳极限参数ε0,导致其对较低应变水平的疲劳寿命预测精度较低。  相似文献   

4.
Alumina coatings with differing phase compositions were deposited on Inconel-718 (IN-718) Ni-base superalloy substrates using sol-gel processing. Mass gain measurements served for studying the oxidation behavior of coated metal surfaces if exposed to 800 °C and 900 °C for up to 4000 h in static air. It was found, that alumina coatings significantly reduce the oxidation related mass gain of IN-718 even after heating to 900 °C for 4000 h. Transmission electron microscopy (TEM) studies revealed diffusion of elements from the metal substrate (IN-718) into the alumina coatings and — to a much lower degree — from the coating into the substrate. These diffusion processes are greatly influenced by the phase composition of the coatings, especially by the presence of alpha-alumina.  相似文献   

5.
This paper presents the automation of centered micro hole drilling, using a magnetically levitated table. Centered micro hole drilling, an example of which is nozzle outlet hole drilling, has previously been performed manually by skilled craftsmen. If a micro hole is drilled when the center line of the drill and the center line of the guide hole are not aligned, the misalignment may cause drill breakage. By using a magnetically levitated table, a workpiece can be aligned frictionlessly. When the horizontal support stiffness of the table is set small, by lowering the drill slowly, centering can be performed due to the contact force between the drill tip and the conical surface of the nozzle. Spinning nozzles were used as experimental workpieces, and 0.1–0.5 mm diameter drills were used.  相似文献   

6.
结合数值模拟和物理实验,实现了圆管、方管管坯上不同孔形、不同翻孔方向的管壁异形渐进翻孔成形.通过模拟验证了圆管管壁异形渐进翻孔成形过程的受力情况与方管翻孔时不同,各个部分的成形力大小大致相同;在方管中有:圆弧端成形力>过渡端成形力>直壁端成形力的关系.研究发现,破裂、金属堆积、划痕严重、底端凸起等是渐进翻孔可能出现的缺...  相似文献   

7.
针对钛合金钻削过程中的轴线偏斜问题,基于Abaqus对钛合金两种不同的钻削过程进行仿真,建立钻杆的有限元模型、数学模型,并将轴线的偏斜问题转化为两种不同钻削方式的轴向力大小问题。得出结论:在工件速度为180~900 r/min时,钻头与工件同时反向旋转时,轴向力随着工件速度的增大而减小。并对该方式进行工件转速为900 r/min的不同钻头转速、进给量的16组试验,结果表明:在钻头转速为900~1 800 r/min之间、进给量为0.02~0.08 mm/r时,平均轴向力减小了33.4%。因此,可以采用该钻削方式减小偏斜量。  相似文献   

8.
In this work, the eff ect of microstructure on hot deformation behavior of ATI 718Plus(hereinafter refers to 718Plus) alloy was studied by isothermal compression test. The results showed that when the strain rate was 0.01–0.1 s-1 with deformation temperature of 980 and 1030 °C, hot deformation behavior was mainly aff ected by dislocation density. Dislocation density of the air-cooling alloy was larger than that of the furnace-cooling alloy, which makes its critical strain smaller and ...  相似文献   

9.
研究了多头螺杆钻具定子及其衬套的变形规律和应力分布,对其应力和应变的分布情况作了理论分析;研究了静压和压差耦合作用(实际工况)下,定子与转子啮合引起橡胶衬套的变形和应力的变化。对等壁厚定子及其衬套进行有限元分析,并与常规定子衬套的有限元结果对比,得出了其力学性能和密封性能优势的量化。结果表明:均匀压力下,等壁厚衬套的法相变形比常规衬套减小约50%且变化均匀;静压和压差耦合作用下,等壁厚定子衬套比常规定子衬套的临界接触压力大,减小速度慢;提高了螺杆钻具的工作性能和密封能力,为等壁厚定转子的优化设计提供了理论基础。  相似文献   

10.
Study on wear mechanisms in drilling of Inconel 718 superalloy   总被引:4,自引:0,他引:4  
The wear mechanisms and the approach to prolong the service life of the TiAlN coated carbide tool in drilling Inconel 718 superalloy are presented. It is found that the coated layer on the cutting edge is gradually abraded-off at the first stage of drill wear due to an excessive friction force on the tool–work interface. This in turns intensifies the friction force and leads to an increase of drilling force. Built-up edge (BUE) is then formed, and chipping starting from the relatively weaker cutting edge takes place subsequently. As a result, many micro-cracks are observed to distribute over the worn area. The subsurface fatigue cracks grow as the drilling process is proceeding. Together with the abrasion of hard carbide particles of the work material, the cutting edges break eventually parallel to the direction of fatigue cracks. At this moment, longer chip forms and cutting process is disturbed to an extent that the process can no longer be effectively continued. Failure of the drill is noted in a very short period of time once the long chips are observed. Finally, drilling experiments with the use of the cutting fluid containing the nano-particle low friction surface modifier are conducted. It is found that the service life of the drill is lengthened significantly and hence the machining cost can be greatly reduced.  相似文献   

11.
采用反向切削法、活顶尖、大进给量等方法减少工件弯曲,增加测壁差工序减少不必要的变形,都能有效地控制壁厚差,提高钻铤质量。  相似文献   

12.
Machining of composites has caught greater attention in manufacturing of structural parts in aerospace, automobile and sporting goods. Composite materials have advantageous features in strength and stiffness coupled with lightweight compared to the conventional metallic materials. Amongst all machining operations, drilling is the most commonly applied method for generating holes for riveting and fastening the structural assembly. Delamination is one of the serious concerns in drilling holes in composite materials at the bottom surface of the workpiece (drill exit). Quite a few references of the drilling of fiber-reinforced plastics report that the quality of cut is strongly dependent on drilling parameter as well as the drill geometry. Saw drills and core drills produce less delamination than twist drills by distributing the drilling thrust toward the hole periphery. Delamination can be effectively reduced or eliminated by slowing down the feed rate when approaching the exit and by using back-up plates to support and counteract the deflection of the composite laminate leading to exit side delaminations. The use of the back-up does reduce the delamination in practice, which its effects have not been well explained in analytical fashion. This paper predicts the effects of backup plate on delamination in drilling composite materials using saw drill and core drill. The critical drilling thrust force at the onset of delamination is calculated and compared with that without backup. The well known advantage of industrial use of backup can be understood fundamentally by the fact that the threshold thrust force at the onset of delamination is increased making the delamination less induced.  相似文献   

13.
Various cutting techniques are available to drill holes, but drilling is the most common way in secondary machining of composite materials owing to the need for structure joining. Twist drills are widely used in the industry to produce holes rapidly and economically. Since the twist drill has a chisel edge, increasing the length of a chisel edge will result in an increase in the thrust force generated. Whereas, a saw drill has no chisel edge; it utilizes the peripheral distribution of the thrust force for drilling. As a result, the saw drill can achieve better a machining quality in drilling composite laminates than twist drill. The deviation of cutting edge that occurs in saw drill would result in an increase of thrust force during drilling, causing delamination damage when drilling composite materials in particular. A comprehensive model concerning delamination induced by the thrust force of a deviation saw drill during drilling composite materials has been established in the present study. For a deviation saw drill, the critical thrust force that triggers delamination increases with increasing β. A lower feed rate has to be used with an increasing deviation saw drill in order to prevent delamination damage. The results agree with real industrial experience. A guide for avoiding the drill deviation during drill regrinding or drill wear has been proved analytically by the proposed model, especially when the deviation ratio (β) affects the critical thrust force. This approach can be extended to examine similar deviation effects of various drills.  相似文献   

14.
In medium-speed wire electrical discharge machining (MS-WEDM), wire in the area near the guide wheel and between the two guide wheels obviously form the wire bending deformation due to wire tension, electrostatic force, electrodynamics force, hydrodynamic force, temperature increment, etc. Besides, the wire deflection would have a direct influence on the machining accuracy, productivity and stability. In this paper, first of all, main causes of wire electrode deformation are proposed to better understand its fundamental mechanism. Second, two macroscopic mechanical models of wire deflection are developed in the area near the guide wheel and between the two guide wheels considering temperature increment and wire vibration in machining 20 mm-thickness workpiece process, respectively. Moreover, the numerical solution of deflection in the area near the guide wheel and the theoretical solution of deflection between the two guide wheels has been worked out. Then, the analysis of the variation trend of wire deflection and the influences of wire deflection on the machining process have been conducted. Eventually, from the confirmation experiment and comparison with other researchers’ models, it has been proved that the macroscopic mechanical models of wire deflection in MS-WEDM process are reasonable and reliable. In addition, according to macroscopic mechanical models, some of the practical approaches of reducing wire deflection have been proposed to improve machining accuracy, and these high-precision models can be applied into NC system to set a compensation for wire deflection in the future.  相似文献   

15.
在分析热交换板的深孔特点和枪钻加工工艺的基础上,提出了通过减小刀具径向切削力、增加导向条长度和增大薄壁处强度来改善薄壁深孔加工中孔轴线偏斜问题的加工方法,依此设计了4种枪钻加工工艺方法,并通过试验进行了对比,获得了理想的加工效果。  相似文献   

16.
为了研究高速切削Inconel 718的切削机理,应用有限元软件DEFORM-2D模拟了高速切削Inconel 718的切削过程,分析了切削速度对切削温度、切削力和剪切角的影响规律以及切削过程中刀具和工件的应力场分布情况.仿真结果表明:切削力随着刀具的切入先迅速线性增大,然后趋于稳定,切削力随切削速度的增大呈下降趋势.切削温度的最高点总是位于前刀面上距离刀刃不远的地方.最高切削温度随着切削速度的增大而增高.最大刀具等效应力出现在前刀面上切削刃的周围,工件上最大等效应力出现在第一变形区.切削过程中,剪切角随切削速度的增加而增大.  相似文献   

17.
A test specimen with a thickness of 2.28 mm was selected as the examined object, to investigate welding induced buckling. Bead-on-plate welding was conducted on the test specimen and residual buckling distortion was observed. A thermal-elastic-plastic (TEP) FE analysis using solid elements model was carried out to predict welding induced buckling after cooling. The inherent deformation of the examined welded joint was also evaluated from the computed results of TEP FE analysis. A shell elements model of the test specimen was used for eigenvalue and elastic FE analyses based on the inherent deformation theory. Eigenvalue analysis predicted the buckling mode and corresponding tendon force in the examined welded joint. Considering large deformation and initial deflection, an elastic FE analysis was carried out to predict the out-of-plane welding distortion, which showed a good agreement with measured distortion.The generation mechanism of buckling in bead-on-plate welded joint was clarified employing the inherent deformation theory. The tendon force (longitudinal inherent shrinkage) is the dominant reason to produce buckling and the disturbance (initial deflection or inherent bending) triggers buckling but does not influence the buckling mode.  相似文献   

18.
Effect of pilot hole on thrust force by saw drill   总被引:1,自引:0,他引:1  
The applications of composite materials are numerous, especially in the structural parts of aerospace, automotive and marine industries. Owing to the marked anisotropy and macroscopic heterogeneity of composite materials, the mechanics of machining used is different when compared to metals. Delamination is one of the most concerns of applying the fiber-reinforced composite materials in various industries. A hole is pre-drilled to eliminate the thrust caused by the chisel edge of twist drill; thus, the threat for delamination is significantly reduced. Saw drills eliminate the chisel and utilize the peripheral distribution of the thrust in drilling. An analytical approach to identifying the role of the pilot hole was proposed to reduce the thrust force-induced delamination during saw drilling. The predicted critical thrust force is in good agreement with the experimental values.  相似文献   

19.
The temperature at the bottom surface of a hole being drilled is measured by using an infrared-radiation pyrometer equipped with two optical fibers. One of the optical fibers is inserted into the oil hole of an internal coolant carbide drill and passes through the machine-tool spindle. This optical fiber is connected to another optical fiber at the end of the spindle. Infrared rays radiating from the bottom surface of the hole being drilled are accepted and transmitted to the pyrometer by the two optical fibers. Temperature increases as drilling progresses, and it increases considerably near the bottom surface of the workpiece. In case of a 10-mm-thick carbon–steel workpiece, temperature reaches 190, 250, and 340 °C at drilling depths of 6, 8, and 10 mm, respectively. To investigate the effect of the increase in temperature on drill wear, a series of 10-mm-deep blind holes are drilled in workpieces with thicknesses of 10 and 25 mm. Tool wear is greater when the drill cuts a hole at the bottom of a 10-mm workpiece than that when the drill cuts a hole at the mid-depth of a 25-mm workpiece. This indicates that the rapid increase in temperature near the bottom of the workpiece effects the progress of drill wear.  相似文献   

20.
GFRP的套孔钻削过程中极易产生分层、撕裂等加工损伤,其与轴向钻削力直接相关。为提高GFRP的制孔质量,采用新型金刚石薄壁套料钻,结合低频轴向振动加工技术,建立单颗磨粒的运动学模型和动力学模型,试验研究GFRP制孔中的轴向力变化规律,并对套料钻的烧焦概率、自动落料率进行分析。结果表明:对比常规钻削,低频振动钻削时的瞬时进给量和轴向力比常规钻削时的大,且随着振幅的增加,轴向力也随之增大;低频振动钻削和常规钻削时的轴向力皆随进给速度的增加而增大,随主轴转速的升高而降低。同时,低频振动钻削时磨粒间断性地参与钻削,大大降低了套料钻的烧焦概率,提高了其自动落料率,自动落料率高达88.24%,可实现GFRP的连续批量制孔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号