首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超声振动辅助气中放电加工技术避免了常用的煤油等工作液作为介质带来的环境污染问题,具有工作环境清洁、适用范围广、加工效率高、工具电极简单等优点。实验研究了电压、脉冲宽度、峰值电流、超声振幅及气体介质压力等参数对加工效率、工件表面粗糙度及电极损耗的影响.并对试验结果进行了分析。  相似文献   

2.
This paper describes improvement of machining characteristics of electrical discharge machining of deep slots using a tool electrode which has micro holes for jetting dielectric liquid over the working surface. The tool electrode was made by the diffusion bonding of two copper plates, over an interface on which micro grooves for jetting the dielectric fluid were formed using electrolyte jet machining. In conventional machining, it is difficult to drill micro holes at the end of a slim electrode and circulate the dielectric fluid from the other end. Hence a solid tool electrode is used and periodically lifted up during machining to flush debris particles out of the discharge gap. Use of the newly developed tool electrode was found to shorten the processing time and improve machining accuracy significantly compared with the conventional solid tool electrode. Since the holes are micro, the outlet shapes are not replicated onto the bottom surface of the slot machined.  相似文献   

3.
对电火花块反拷加工的运动控制系统进行了设计,提出了可行的数据采集策略与运动控制策略。基于LabView开发的运动控制系统主要包括初始化模块、粗对刀模块、精确对刀模块、加工控制模块与坐标实时显示模块。应用设计的控制系统对碳化钨工具电极进行了反拷加工实验,正交实验结果得出:材料去除率随着脉宽的增大先增加后减小,脉宽有一个最佳值,脉宽小了能量不足,脉宽大了容易产生电弧放电,影响了材料去除。材料去除率随着脉间相对于脉宽倍数、主轴转速与进给率的增大而增大,足够大的脉间以及主轴转速,有利于电火花加工区域的消电离与加工产物的排除,在材料能够有效去除的前提下,进给速度越快材料去除率越高。  相似文献   

4.
Improvement of Dry EDM Characteristics Using Piezoelectric Actuator   总被引:1,自引:0,他引:1  
This paper describes improvement of the machining characteristics of dry electrical discharge machining (dry EDM) by controlling the discharge gap distance using a piezoelectric actuator. Dry EDM is a new process characterized by small tool electrode wear, negligible damage generated on the machined surface, and significantly high material removal rate especially when oxygen gas is used. However, the narrow discharge gap length compared with conventional EDM using oil as the dielectric working fluid results in frequent occurrence of short circuiting which lowers material removal rate. A piezoelectric actuator with high frequency response was thus introduced to help control gap length of the EDM machine. To elucidate the effects of the piezoelectric actuator, an EDM performance simulator was newly developed to evaluate the machining stability and material removal rate of dry EDM.  相似文献   

5.
Electrical discharge machining of Ti6Al4V with a bundled electrode   总被引:1,自引:0,他引:1  
The aim of this study is to investigate an efficient Ti6Al4V electrical discharge machining (EDM) process with a bundled die-sinking electrode. The feasibility of machining Ti6Al4V with a bundled electrode was studied and its effect on EDM performance was compared experimentally using a solid die-sinking electrode. The simulation results explain the high performance of the EDM process with a bundled electrode by through the use of multi-hole inner flushing to efficiently remove molten material from the inter-electrode gap and through the improved ability to apply a higher peak current. A 3-factor, 3-level experimental design was used to study the relationships between 2 machining performance parameters (material removal rate: MRR, tool wear ratio: TWR) and 3 machining parameters (fluid flow rate, peak current and pulse duration). The main effects and influences of the 2-factor interactions of these parameters on the performances of the EDM process with the bundled electrode are discussed.  相似文献   

6.
This research mainly explores the influence of surfactant on the characteristics of electrical discharge machining (EDM) process on mold steel (SKD61). In this study, particle agglomeration is reduced after surfactant molecules cover the surface of debris and carbon dregs in kerosene solution. Debris is evenly dispersed in dielectric to improve the effects of carbon accumulation and dreg discharge, and reduce the unstable concentrated discharge. The EDM parameters, such as peak current, pulse duration, open voltage and gap voltage are studied in this paper. The experimental results show that after the addition of Span 20 (30 g/L) to dielectric, the conductivity of dielectric is increased. The machining efficiency is thus increased due to a shorter relay time of electrical discharge. When proper working parameters are chosen, the material removal rate is improved by as high as 40–80%. Although the improvement of surface roughness is not obvious, the surface roughness is not deteriorated since the material removal rate is great.  相似文献   

7.
The gap conditions of electrical discharge machining (EDM) would significantly affect the stability of machining progress. Thus, the machining performance would be improved by expelling debris from the machining gap fast and easily. In this investigation, magnetic force was added to a conventional EDM machine to form a novel process of magnetic force-assisted EDM. The beneficial effects of this process were evaluated. The main machining parameters such as peak current and pulse duration were chosen to determine the effects on the machining characteristics in terms of material removal rate (MRR), electrode wear rate (EWR), and surface roughness. The surface integrity was also explored by a scanning electron microscope (SEM) to evaluate the effects of the magnetic force-assisted EDM. As the experimental results suggested that the magnetic force-assisted EDM facilitated the process stability. Moreover, a pertinent EDM process with high efficiency and high quality of machined surface could be accomplished to satisfy modern industrial applications.  相似文献   

8.
Electrical discharge milling (ED-milling) is an emerging technology which entails a rotating cylindrical tool that is traversed along a predefined tool path to machine a cavity. This process configuration offers advantages such as minimal time/cost associated with tool manufacture and improved gap flushing, as compared to traditional die-sinking that involves complex three-dimensional tools. Rotating cylindrical tools, however, inherently preclude the machining of sharp features and correspond to increased relative electrode wear; the reduced machining engagement further restricts the machining power which in turn limits the removal rate. To this end, this paper presents a novel tooling concept that relates to a set of standard prismatic tools of an oblong section, which incorporate the favorable functional characteristics of both ED-milling and die-sinking technologies. Aspects of computer-aided manufacture referring to tool selection, sizing and path planning are discussed. The concepts developed are illustrated through the application of an oblong tool that rotates and translates to machine a sample two-dimensional cavity.  相似文献   

9.
Fabrication of deep holes (depth to diameter ratio >10) using electrical discharge drilling (EDD) has gained momentum in the areas of aerospace, automotive and biomedical industries. However, formation of recirculation zones in flushing channel causes accumulation of debris particles at higher depths of drilling. This leads to secondary discharges within the flushing channel resulting in excessive tool wear, dimensional inaccuracy and hole tapering. The present paper proposes a novel tool geometry having orifices at the bottom end of tool electrode with an aim to improve debris evacuation. The effectiveness of proposed method is established through CFD simulations and experiments.  相似文献   

10.
Micro electric discharge milling (μED-milling) process is gaining lot of interest in the area of microfabrication specifically for hard to machine materials. Any complex shape can be generated with a controlled motion of cylindrical tool in a predefined path similar to conventional micromilling. In this method the material removal mechanism in tool and workpiece is complex and requires a detail study of the process parameters. Parameters such as tool rotation speed, feed rate and aspect ratio (AR) can play a vital role in μED-milling process along with the fundamental parameter such as energy. This research work aims to provide exhaustive study of parameters on material removal rate (MRR) and tool wear rate (TWR) by conducting general factorial experiments. A new method is proposed to measure the volume of material eroded from workpiece and tool with an aid of design software. The experimental result shows that the parameters have individual and combined effect on MRR and TWR. Among the parameters, tool rotation speed has a significant function in flushing away the debris to ensure stable discharge. Detailed surface morphology of the machined features has also been analyzed using scanning electron microscope (SEM). A regression analysis was carried out to establish models for MRR and TWR as a function of process parameters.  相似文献   

11.
提出了一种超高效电火花电孤复合铣削镍基高温合金Ineonel718的加工方法.构建了一种新型大功率电源,主要由高压脉冲电源和低压大功率直流电源组成。在冲液和电极旋转的作用下得到了非连续电弧,材料去除率可达13421mm3/min,相对电极损耗率可达1.71%。进行了复合加工和电火花加工的对比实验研究,分析了电极转速对材料去除率和相对电极损耗率的影响,并对加工表面特性进行了研究。  相似文献   

12.
Electrical discharge machining (EDM) is used as a precision machining method for the electrically conductive hard materials with a soft electrode material. But recently we succeeded to machine on insulating material by EDM. The technology is named as an assisting electrode method. The EDMed surface is covered with the electrical conductive layer during discharge. The layer holds the electrical conductivity during discharge. For micro-EDM, the wear of tool electrode becomes lager ratio than the normal machining. So the micro-machining is extremely difficult to get the precision sample.

In this paper to obtain a fine and precise ceramics sample, some trials were carried out considering the EDM conditions, tool electrodes material and assisting electrode materials. Insulating Si3N4 ceramics were used for workpiece. The machining properties were estimated by the removal rate and tool wear ratio. To confirm the change of micro-machining process, the discharge waveforms were observed. The micro-machining of the Ø0.05 mm hole could be machined with the commercial sinking electrical discharge machine.  相似文献   


13.
Review on ultrasonic machining   总被引:9,自引:0,他引:9  
Ultrasonic machining is of particular interest for the cutting of non-conductive, brittle workpiece materials such as engineering ceramics. Unlike other non-traditional processes such as laser beam, and electrical discharge machining, etc., ultrasonic machining does not thermally damage the workpiece or appear to introduce significant levels of residual stress, which is important for the survival of brittle materials in service. The fundamental principles of ultrasonic machining, the material removal mechanisms involved and the effect of operating parameters on material removal rate, tool wear rate and workpiece accuracy are reviewed, with particular emphasis on the machining of engineering ceramics. The problems of producing complex 3-D shapes in ceramics are outlined.  相似文献   

14.
An anodic tool polarity is generally adopted in sink electrical discharge machining (EDM) to maximize material removal relative to tool wear. Sink EDM of Ti and Ti6Al4V is however atypical in that these materials necessitate a cathodic tool polarity. Adding to the intrigue is γ-TiAl, which machines better under the conventional anodic polarity. This research focused on clarifying the phenomena behind this interesting behavior by investigating removal mechanisms over a range of relevant process conditions. The anomaly is demonstrated to arise from the polarity-dependent nature and extent of TiC formation on the work surface, which significantly affects material removal.  相似文献   

15.
为进一步改善短电弧铣削加工间隙排屑情况,采用内外冲液组合式,通过Fluent对其进行仿真分析,得到了流场压力、速度和蚀除颗粒分布规律。分析不同冲液方式、冲液压力和电极转速对极间间隙流场特性的影响规律,并进行单因素试验。以MRR、TWR为评价指标,找出短电弧铣削加工性能的最佳参数。  相似文献   

16.
The tip shape of a blind micro-hole produced using micro electrical discharge machining varies with respect to the process parameters used during machining. The usual tip shape is a blunt geometry within the common range of applications, however, under specific machining conditions and machining depths, the tip shape changes drastically to an inverted concaved shape. The origin of such tip deformation in micro electric discharge machining of blind micro-holes was investigated. It was observed that debris particles produced during machining accumulated at the tip, formed a hill and functioned as a tool electrode especially when using fine machining conditions. The phenomena is elaborated experimentally with the affecting parameters to describe the wear mechanism. Open gap voltage, pulse energy and tool rotation speed are examined as varying parameters during the experiments.  相似文献   

17.
提出了一种可用于难加工材料大余量高速蚀除的新的放电加工方法——基于流体动力断弧的高速电弧放电加工。与传统的电火花加工方法相比,高速电弧放电加工采用具有更高能量密度的电弧放电而不是火花放电来实现材料的蚀除;与其他利用电弧进行材料去除的工艺方法相比,高速电弧放电加工可使用特殊设计的成形电极实现强制多孔内充液,从而获得三维复杂型腔的沉入式加工能力,因此具有更广泛的应用前景。初步实验表明,对于镍基高温合金等难切削材料,高速电弧放电加工的材料去除率(MRR)远高于传统的电火花加工,甚至高于铣削加工。例如:加工镍基高温合金(GH4169)的材料去除率可达11 300 mm3/min,而电极损耗率(TWR)低于3%。由此可见,高速电弧放电加工在难切削材料的高效去除加工方面具有明显的技术优势。  相似文献   

18.
Dry electrical discharge machining is one of the novel EDM variants, which uses gas as dielectric fluid. Experimental characterization of material removal in dry electrical discharge drilling technique is presented in this paper. It is based on six-factor, three-level experiment using L27 orthogonal array. All the experiments were performed in a ‘quasi-explosion’ mode by controlling pulse ‘off-time’ so as to maximize the material removal rate (MRR). Furthermore, an enclosure was provided around the electrodes with the aim to create a back pressure thereby restricting expansion of the plasma in the dry EDM process. The main response variables analyzed in this work were MRR, tool wear rate (TWR), oversize and compositional variation across the machined cross-sections. Statistical analysis of the results show that discharge current (I), gap voltage (V) and rotational speed (N) significantly influence MRR. TWR was found close to zero in most of the experiments. A predominant deposition of melted and eroded work material on the electrode surface instead of tool wear was evident. Compositional variation in the machined surface has been analyzed using EDAX; it showed migration of tool and shielding material into the work material. The study also analyzed erosion characteristics of a single-discharge in the dry EDM process vis-á-vis the conventional liquid dielectric EDM. It was observed that at low discharge energies, single-discharge in dry EDM could give larger MRR and crater radius as compared to that of the conventional liquid dielectric EDM.  相似文献   

19.
Debris concentration and bubble volume fraction in the bottom gap between the electrode and workpiece affect the state of consecutive-pulse discharge and the efficiency of electrical discharge machining (EDM). Thus, the mechanisms of debris and bubble movement during consecutive-pulse discharge should be elucidated. However, these mechanisms have not been fully understood because of debris and bubble movement in the machining gap are difficult to simulate and observe. This study proposes a three-dimensional model of flow field with liquid, gas, and solid phases for machining gap in EDM. The mechanisms of debris and bubble movement in the machining gap during consecutive-pulse discharge were analyzed through the model. Debris and bubble movement in consecutive-pulse discharge was observed through experiments. The results showed that the proposed simulation model is feasible. The bubble expansion is the main way that the bubbles exclude from machining gap. Much debris moves outside the machining gap following the excluded bubbles, which is the main way that the debris excludes from machining gap. The bubble expansion becomes strong with the increase of the discharge current and pulse-on time.  相似文献   

20.
Owing to the reduced tool area and poor flushing conditions in deep holes, tool wear in micro-electrical discharge machining (EDM) is more significant than in macro-EDM. In micro-EDM drilling, the z-axis of the tool position is monitored as machining progresses. However, due to significant electrode wear, the machined hole depth is not identical to the programmed depth of the hole, and thus this will result in geometrical inaccuracy. This paper presents a new micro-EDM drilling method, in which the material removal volume is estimated as machining progresses. Compensation length is calculated and adjustment is made repeatedly along the tool path until the targeted material removal volume is reached. A real-time material removal volume estimator is developed based on the theoretical electro-thermal model, number of discharge pulse and pulse discrimination system. Under various energy input and machining depth settings, the experimental and estimated results are found to be in satisfactory agreement with average error lower than 14.3% for stainless steel, titanium, and nickel alloy work materials. The proposed drilling method can compensate the tool wear and produce more accurate micro-holes as compared to other methods. Experimental work also shows that the proposed method is more reliable as compared to the uniform wear method. In drilling micro-holes of 900 μm depth, the depth error can be reduced to 4% using the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号