首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of rare-earth oxides on fracture properties of ceria ceramics   总被引:2,自引:0,他引:2  
The influences of the sintering additive content of rare-earth oxide (Y2O3, Gd2O3, Sm2O3) on microstructure and mechanical properties of ceria ceramics were investigated by scanning electron microscopy and small specimen technique. A small punch testing method was employed to determine the elastic modulus and biaxial fracture stress of the ceria-based ceramics, and the fracture toughness was estimated by Vickers indentation method. Grain growth in the rare-earth oxides doped ceria ceramics was significantly suppressed, compared to the pure ceria ceramics. However, the elastic modulus, fracture stress and fracture toughness were decreased significantly with increasing additive content of the rare-earth oxides, possibly due to the oxygen vacancies induced by the rare earth oxides doping. The experimental results suggest that the change in the mechanical properties should be taken into account in the use of ceria-based ceramics for solid oxide fuel cells, in addition to the improvement of oxygen ion conductivity.  相似文献   

2.
以B4C、SiC粗粉为原料, 采用机械合金化辅助热压烧结工艺, 在不添加任何助烧剂的情况下于1950℃制备出致密的B4C-SiC复合陶瓷。通过对烧结样品进行相对密度、维氏硬度、抗弯强度和断裂韧性测试, 研究SiC含量对复合陶瓷力学性能的影响; 结合XRD、SEM和TEM对样品进行组分和微观结构分析, 研究其微观结构与力学性能之间的关系。结果表明: 复合陶瓷的相对密度和断裂韧性随SiC含量的增加而增大, 当SiC含量为50wt%时获得最大值为96.1%和4.6 MPa•m1/2; 复合陶瓷的硬度和抗弯强度随SiC含量的增加呈先增大后减小的趋势, 在SiC含量为20wt%时获得最大值25.5 GPa和480 MPa。SiC相均匀分布在B4C基体中使得复合陶瓷具有较高的强度; B4C与SiC之间好的界面相容性以及SiC的高断裂韧性是该B4C基复合陶瓷韧性得到显著提高的原因。  相似文献   

3.
Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and microhardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO2. Flexural strength and fracture toughness were dependent on CeO2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness, 9.2 MPa√m.  相似文献   

4.
碳化硅(SiC)陶瓷具有优异的力学性能, 但是其断裂韧性相对较低。石墨烯的引入有望解决碳化硅陶瓷的断裂韧性较低的问题。本研究采用热压烧结工艺, 制备了具有不同还原-氧化石墨烯(rGO)掺入量的SiC复合材料。经过2050℃保温、40 MPa保压1 h后, 所制备的复合材料均烧结致密。对复合材料中rGO的掺入量、微观结构和力学性能的相互关系进行分析和讨论。加入4wt%的rGO后, 复合材料的三点抗弯强度达到564 MPa, 比热压SiC陶瓷提高了6%; 断裂韧性达到4.02 MPa•m1/2, 比热压SiC陶瓷提高了54%。加入6wt%的rGO后, 复合材料的三点抗弯强度达到420 MPa, 略低于热压SiC陶瓷, 但其断裂韧性达到4.56 MPa•m1/2, 比热压SiC陶瓷提高了75%。裂纹扩展微观结果显示, 主要增韧机理有裂纹偏转、裂纹桥连和rGO片的拔出。  相似文献   

5.
报道一种制备碳纳米管增强氧化铝基复合材料的新方法,用燃烧反应所产生的热量为热源代替传统烧结炉,在燃烧反应完成的同时施加机械压力来实现快速烧结,当碳纳米管掺量为1%(质量分数)时复合材料的断裂韧性同比提高了50%,该方法有利于避免碳纳米管的高温破坏,复合材料的增韧作用主要来自于碳纳米管的拔出效应和桥联机制.  相似文献   

6.
Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures.The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been investigated.Crystallization of Si-B-O-N ceramics occurred at about 1400℃.Density, elastic modulus,and flexural strength of the ceramics increased with the increasing sintering temperatures, and reached to their maximum values at 1600℃ .By contrast, hardness and frac-ture toughness of the ceramics monotonically changed with increasing sintering temperatures.Hardness decreased,while the fracture toughness increased.The principal toughening mechanisms including crack deflection, crack bridging and plate grain pulling-out effects are discussed.  相似文献   

7.
SiAlONs are ceramics with high potential as biomaterials due to their chemical stability, associated with suitable mechanical properties, such as high fracture toughness and fracture resistance. The objective of this work was to investigate the mechanical properties and the cytotoxicity of these ceramic materials. Three different compositions were prepared, using silicon nitride, aluminum nitride and a rare earth oxide mixture as starting powders, yielding Si3N4–SiAlON composites or pure SiAlON ceramics, after hot-pressing at 1750 °C, for 30 min. The sintered samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Furthermore, hardness and fracture toughness were determined using the Vicker's indentation method. The biological compatibility was evaluated by in vitro cytotoxicity tests. Ceramic with elevated hardness, ranging between 17 and 21 GPa, and high fracture toughness of 5 to 6 MPa m1/2 were obtained. Since a nontoxic behavior was observed in the cytotoxicity tests, it may be assumed that SiAlON-based ceramics are viable materials for clinical applications.  相似文献   

8.
张彪  杨长安  施佩 《无机材料学报》2018,33(12):1355-1359
以羟基磷灰石(Hydroxyapatite, HAp)为基体, 石墨烯(Graphene, rGO)作为增强相, 利用等离子活化烧结制备了石墨烯/羟基磷灰石(rGO/HAp)复相生物陶瓷。系统研究了rGO添加量对HAp陶瓷基体物相结构、生物活性及断裂韧性的影响。结果表明, rGO的加入有利于提高HAp陶瓷的生物活性。同时, 复相生物陶瓷的硬度与断裂韧性随rGO添加量的增加均表现出先升高, 后显著降低的变化趋势。当rGO添加量为2wt%时, 样品的硬度与断裂韧性分别达到6.97 GPa和0.84 MPa•m1/2, 较纯相HAp陶瓷提高了11.5%和37.3%。研究表明rGO的拔出效应是导致复相陶瓷力学性能提高的主要原因。  相似文献   

9.
热压烧结TiB2陶瓷的显微结构和力学性能研究   总被引:1,自引:0,他引:1  
以Y2O3-Al2O3为烧结助剂,通过热压制备了TiB2陶瓷,研究了烧结温度、烧结时间和晶化处理对材料的显微结构和力学性能的影响.实验结果表明,随着烧结温度的升高,烧结体失重增加,其抗弯强度和断裂韧性降低;烧结时间延长,其显微结构的均匀性降低,对力学性能不利.晶粒直径对TiB2陶瓷的力学性能有重要影响.晶化处理能够导致晶界拆出YAG相,从而提高TiB2陶瓷的高温抗弯强度.  相似文献   

10.
《Materials & Design》1988,9(4):204-212
Thermal stress fracture behaviour of zirconia based ceramics are described. Although partially stabilized zirconia (PSZ) and tetragonial zirconia polycrystals (TZP) ceramics show superior mechanical properties such as high fracture strength/fracture toughness, the thermal shock resistance of zirconia ceramics is anomalously low. The thermal stress fracture mechanism and improvement of the thermal shock resistance are discussed.  相似文献   

11.
Zirconia-toughened mullite (ZTM) ceramics has been prepared by using an electrically fused mullite as a raw material and its mechanical properties and microstructure as a function of impurities in the raw material were studied. These impurities led to a decrease in the mechanical properties of ZTM ceramics by changing the properties of the glassy phase in the ceramics, especially at high temperature. The mechanical properties of the ceramics were improved by adding B2O3, and the toughness at room temperature increased from 4.4 MPa m1/2 to 5.9 MPa m1/2 while that at 800°C increased from 2.9 MPa m1/2 to 4.4 MPa m1/2. The toughness of the ceramics on the addition of B2O3 at room temperature was increased by 34% and that at 800°C by 52%. The influence of the impurities on the ZTM ceramics and the improvement of the ceramic properties by the addition of B2O3 were studied and their mechanisms were discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Dense Ce-TZP ceramics containing about 7 to 16 mol% CeO2 were fabricated using fine powders prepared by the hydrolysis technique. The mechanical properties of these ceramics were evaluated. The bending strength of sintered bodies with 10 to 12 mol% CeO2 content and small grain-size was about 800 MPa. Fracture toughness was measured by two different methods; a micro-indentation technique and the chevron notched beam technique. A high fracture toughness was obtained for sintered bodies with 7 to 10% CeO2 content and large grain-size. Fracture toughness and hardness were dependent on CeO2 content and grain-size. These mechanical properties are discussed on the basis of the stability of the metastable tetragonal phase depending on CeO2 content and grain-size.  相似文献   

13.
Effects of post-hot isostatic pressing (post-HIP) on the elastic properties, strength and fracture toughness of different commercial alumina-based ceramics was investigated. The materials were presintered ceramics with alumina contents of 94, 97 and 99%. HIP was performed using a Mo or graphite furnace in a wide temperature range to establish regimes which allowed attainment of the best combination of mechanical properties, e.g. ultimate bending strength, Weibull's modulus, fracture toughness and modulus of elasticity. The results are discussed in relation to microstructure development.  相似文献   

14.
20%纳米ZrO2(3Y)粉末加入到高纯亚微米Al2O3粉中,采用高压干压成型方法和恒速升温多阶段短保温烧结方法制备出不同烧结温度下的复相陶瓷。研究烧结温度对复相陶瓷力学性能的影响,通过XRD,EDS和SEM对复相陶瓷进行元素组成和微观结构分析。结果表明:烧结温度在很大程度上影响着复相陶瓷的力学性能和微观结构,常压烧结1600℃保温8h时,相对密度、维氏硬度和断裂韧性达到最大,分别为98.6%,18.54GPa和9.3MPa·m1/2,而基体晶粒尺寸为1.4~8.1μm,ZrO2相变量为34.6%。1600℃下复相陶瓷具有优质的微观结构,断裂方式为沿晶-穿晶混合断裂模式。ZrO2(3Y)粉体的加入,从相变增韧、内晶型颗粒增韧和裂纹偏转等多个方面提高了复相陶瓷的断裂韧性。  相似文献   

15.
Biomorphous SiC/Si porous ceramics with laminated structure are prepared from beech veneer and phenolic resin. The preparation involves carbonization under vacuum and reaction with melted silicon to obtain the biomorphous carbide template. X-ray diffraction confirms that the biomorphous SiC/Si porous ceramics are mainly composed of β-SiC, free silicon and residual carbon. Scanning election microscopy observations indicate a laminated structure and 1–10 μm microporous structures, which suggest retention of the native characteristics of the wood. This paper examines mechanical properties of the final composite in relation to the lamination, porous structure, and free silicon content. The bending strength of the ceramics decreases as the apparent porosity increases. The fracture toughness increases initially with apparent density and then decreases. The fracture toughness load–displacement curve presents a step-like pattern, which suggests that the laminated SiC/Si porous ceramics have high fracture toughness.  相似文献   

16.
3Y—TZP多晶材料密度,断裂相变与力学性能的相互关系   总被引:3,自引:0,他引:3  
通过对不同密度的Y-TZP(钇稳定四方相氧化锆多晶体)材料的力学性能(强度、韧性及硬度)和断裂时相变性能的研究,发现材料的相对密度不仅直接影响其力学性能,而且影响断裂时断口四方相向单斜相的相变量,材料密度越高,相变量越大,材料密度和断裂时断口相变量共同决定了材料的力学性能。  相似文献   

17.
氧化锆层状复合陶瓷表面压应力与相变增韧的关系   总被引:2,自引:0,他引:2  
利用维氏硬度仪和X射线应力分析仪、X射线衍射仪等手段分别对单层和层状氧化锆陶瓷进行了力学性能测试和分析,研究结果表明,在ZrO2层状复合陶瓷中,压痕裂纹的形成除了因塑性区体积变化产生的残余应力外,还与相变应力和表面压应力有关,表面压应力对表面裂纹具有较大的抑制作用.层状陶瓷断裂韧性提高,主要是通过表面压应力对压痕裂纹区应力强度因子的贡献、提高断裂相变量,强化相变增韧效果、细化晶粒等几个方面来实现的.  相似文献   

18.
The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass–ceramics, prepared by sol–gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass–ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m1/2, respectively. The lithium aluminosilicate glass–ceramics hot pressed 1300 and 1350 °C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.  相似文献   

19.
The potential of a microwave heating technique for the sintering of 3Y-TZP ceramics is demonstrated. High density samples were obtained by short duration firing in a domestic microwave oven. The ultrafine and monomodal size distribution of grains resulting from the process has important implications in terms of mechanical properties. The hardness and fracture toughness values compare very well with long duration, conventionally fired 3Y-TZP ceramics.  相似文献   

20.
已经应用于临床的骨修复材料主要是生物活性陶瓷和金属如钛及其合金制成的生物材料,它们能与生物骨结合但与人体松质骨相比弹性模量高且柔韧性较低.需要研究1种具有与天然生物骨相类似力学性能的生物活性材料.目前制备这种材料的方法有溶胶-凝胶法、共混法、插层复合法.已分别用明胶、PDMS、PTMO及MPS与无机系统合成了生物活性的有机-无机杂化材料.其今后主要发展方向在于有机成分的引入以达到最佳的柔韧性和力学强度以及作用机理的研究以提高生物活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号