首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The double sided buried contact (DSBC) silicon solar cells have consistently shown high open-circuit voltages (Voc) than its single sided buried contact counterpart because of better rear surface passivation. The rear surface passivation which is provided by the rear floating junction is effective only when there is no leakage in the rear floating junction. However, the partial shunting of the rear floating junction can cause a drop in the fill factor of the cell which has been the only parameter limiting the realization of the structure's potentials. In this paper, LBIC (light beam induce current), spectral response, dark I-V and Jsc-Voc measurements for DSBC cells have been carried out to help explain some of the experimentally observed attributes of this structure. The partly shunted rear floating junction has been identified by LBIC measurement as low current regions near the rear metal contacts.  相似文献   

2.
Low-energy proton irradiation effects on GaAs/Ge solar cells   总被引:1,自引:0,他引:1  
This paper reports the low-energy proton irradiation effects on GaAs/Ge solar cells for space use. The proton irradiation experiments were performed with a fluence of 1.2×1013 cm−2, energies ranging from 0.1 to 3.0 MeV. The results obtained demonstrate that the irradiation with a proton energy of 0.3 MeV gives rise to the most degradation rates of Isc, Voc and Pmax of the solar cells with no coverglass, which is related to the proton irradiation-induced vacancies near the pn junction in GaAs/Ge cells. The degradation rates of Isc, Voc and Pmax of the solar cells with coverglass increase as the proton energy increases due to the cascade ions induced by collision processes. It is found that the coverglass has an obvious protection effect against the irradiation with the proton energy below 0.5 MeV.  相似文献   

3.
Current-voltage-temperature (I-V-T) characteristics evaluated near 150K and 300K were used to study the photovoltaic property variations in hydrogenated amorphous silicon (a-Si:H)/crystalline silicon (c-Si) solar cells. The possible carrier transport mechanisms in such devices were examined from the I-V-T data which indicated a significant influence of the amorphous /crystalline interface on the short-circuit current density (Jsc) and open-circuit voltage (Voc) of the solar cells. Carrier transport near 300K for forward biases was by a multi-tunneling mechanism and became space charge limited with increasing bias. For devices having low Jsc and Voc an additional region was seen in both forward and reverse biases, at low temperatures, where the current simply varied linearly with the applied bias. This characteristic manifested in both high and low temperatures region for devices with still lower photovoltaic properties, which has been reasoned to be due to a higher interface density. Passivating the c-Si surface with HF just prior to the amorphous layer deposition resulted in a large improvement in the properties. The most significant effect was on the Jsc which improved by an order of magnitude. The treatment also affected the lower temperature I-V-T data in that the current fell to very low levels. The spectral response of the treated solar cells showed enhanced blue/violet response compared with the unpassivated devices. The interface passivation plus reducing a-Si thickness has improved the solar cell efficiency from 0.39% to 9.5%.  相似文献   

4.
The short circuit current of a monocrystalline silicon solar cell can be enhanced further by suitably modifying the slat angle of its microgroove surface due to reduction in reflection coefficient and increase in optical trapping with decreasing slat angle. In this paper the dependence of Isc, Voc and η of a solar cell on the slat angle have been computed taking into account the variation of the reflection coefficient with the slat angle.It is observed that Isc increases while Voc decreases significantly with decreasing slat angles leading to a maximum efficiency of about 22% corresponding to a slat angle range lying between 30° and 45° without antireflection coating. However, the efficiency can be increased further to about 25% with AR coating.  相似文献   

5.
The influence of alkylaminopyridine additives on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell with an I/I3 redox electrolyte in acetonitrile was studied. The current–voltage characteristics were measured for more than 20 different alkylaminopyridines under AM 1.5 (100 mW/cm2). The alkylaminopyridine additives tested had varying effects on the performance of the cell. All the additives decreased the short circuit photocurrent density (Jsc), but increased the open-circuit photovoltage (Voc) of the solar cell. Molecular orbital calculations imply that the dipole moment of the alkylaminopyridine molecules influences the Jsc of the cell and that the size, solvent accessible surface area, and ionization energy all affect the Voc of the cell. The highest Voc of 0.88 V was observed in an electrolyte containing 4-pyrrolidinopyridine, which is comparable to the maximum Voc of 0.9 V for a cell consisting of TiO2 electrode and I/I3 redox system.  相似文献   

6.
Silicon nitride films produced by plasma enhanced chemical vapor deposition (PECVD) have been studied as antireflection (AR) coating on polycrystalline silicon solar cells. A substantial enhancement (28%) in the short circuit current (Isc) has been obtained. The open circuit voltage (Voc) of these cells has also been found to improve after silicon nitride deposition. The deposition conditions to optimise the improvement in the cell performance have been discussed.  相似文献   

7.
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5–20 MeV at a fluence ranging from 1×109 to 7×1013 cm−2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax degrade as the fluence increases, respectively, but the degradation rates of Isc, Voc and Pmax decrease as the proton energy increases, and the degradation is relative to proton irradiation-induced defect Ec−0.41 eV in irradiated GaAs/Ge cells.  相似文献   

8.
CIGS films were treated in In–S aqueous solution for high-efficiency CIGS solar cells. The In–S aqueous solution contained InCl3 and CH3CSNH2 (thioacetamide). The In–S treatment modified the CIGS surface favorably for high-efficiency CIGS solar cells as evidenced by the increase in Voc, Jsc and FF. The In–S treatment formed thin CuInS2 layer on the CIGS surface which contributes to the high efficiency and stable performance of the CIGS solar cell. The best cell showed an efficiency of 17.6% (Voc=0.649 V, Jsc=36.1 mA/cm2 and FF=75.1%) without any annealing and light soaking before IV measurement.  相似文献   

9.
An Al/SnO2/n-Si solar cell from n-type silicon (6.5 Ω-cm, 100) wafers using chemical vapour deposition (CVD) has been fabricated. The fabrication details, IV characteristics determining conversion-efficiency (ηmax), open circuit voltage (Voc) and short circuit current (Isc) have been presented. A maximum conversion efficiency of 6.3% for an unencapsulated cell of area 85.20 mm2 has been obtained.  相似文献   

10.
This paper reports on a 100 cm2 single crystalline silicon solar cell with a conversion efficiency of 19.44% (Jsc = 37.65 mA/cm2, Voc = 638 mV, FF = 0.809). The cell structure is as simple as only applying the textured surface, oxide passivation, and back surface field by the screen printing method. The comparison between cell performances of the CZ (Czochralski) and FZ (Floating zone) silicon substrates was investigated. The higher efficiency cells were obtained for the FZ substrate rather than the CZ substrate. The influence of the phosphorus concentration of the emitter on the cell efficiency has also been investigated. A good result was obtained when the surface concentration of phosphorus was 3 × 1020 cm−3 and the junction depth was about 0.6 μm.  相似文献   

11.
The influence of pyrazole additives in an I/I3 redox electrolyte solution on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics of the cell were measured using 18 different pyrazole derivatives. All of the pyrazole additives enhanced the open-circuit photovoltage (Voc) and the solar energy conversion efficiency (η), but reduced the short-circuit photocurrent density (Jsc). Most of the pyrazoles improved fill factor (ff). The physical and chemical properties of the pyrazoles were computationally calculated in order to elucidate the reasons for the additive effects on cell performance. The greater the partial charge of the nitrogen atom at position 2 in the pyrazole group, the larger the Voc, but the smaller the Jsc values. As the dipole moment of the pyrazole derivatives increased, the Voc value increased, but the Jsc value decreased. The Voc of the cell also increased as the ionization energy of the pyrazoles decreased. These results suggest that the electron donicity of the pyrazole additives affected the interaction with the nanocrystalline TiO2 photoelectrode, the I/I3 electrolyte, and the acetonitrile solvent, which changed the Ru(II)-dye-sensitized solar cell performance.  相似文献   

12.
The photovoltaic properties including IV characteristics, junction capacitance (CV), short-circuit current (Isc), open-circuit voltage (Voc), fill factor (ff), efficiency (η), and spectral response of Cu2S/CdS heterojunction cells have been examined before and after exposure to nuclear radiation. This included γ-rays of Co-60, and electron beams (at 1.5 MeV energy).The short-circuit current (Isc) decreased, while the open-circuit voltage (Voc), the fill factor (ff) and the efficiency (η) increased after heat treatment (at 260°C in air for 20 min). The Isc effect during exposure to γ-rays was studied. It was found that Isc increases as the dose rate increases. The sensitivity dependence of the Isc density on dose rate was observed to be linear, and hence a universal constant for its sensitivity is found to be 45 (nA/cm2) (rad/s).No permanent damage was shown until about 300 Mrad for γ rays and 380 Mrad for electron beams. After these doses, the Isc and Voc slightly decreased on increasing the absorbed dose.After heat treatment, the spectral response was modulated. It was found that the wavelength response against the photocurrent decreased from 1000 to 800 nm and the photocurrent also slightly decreased in the range of wavelengths from 800 to 450 nm and increased from 350 to 540 nm. Heat treatment before irradiation improved the photovoltaic cells. After irradiation by γ-rays and electron beams, the photocurrent went back to its original value by annealing (for 2 h at 500°C). The capacitance–voltage behavior decreased after irradiation and hence the doping decreased.  相似文献   

13.
Quasi-dye-sensitized solar cells were prepared by using ionic liquid-type electrolytes and gelators consisting of polyvinylpyridine and alkyl dihalides. Gelation occurred by the reaction of polyvinylpyridine and alkyl dihalides. When the chain length of the dihalides was varied, the short-circuit current (Jsc) increased with an increase in the chain length. However, the open-circuit voltage (Voc) and fill factor (ff) slightly decreased. The increase in Jsc was brought about by the decrease in the interfacial resistances between the gel electrolyte and the counter electrode. In addition, the increase in the Jsc was explained by increases in the apparent diffusion coefficient of I/I3 when the chain length increased. Decreases in Voc and ff were explained by back-electron transfers from TiO2 to iodine in the electrolytes. Voc of the cells solidified by alkyldiiodide was lower than that solidified by alkyldichloride or alkyldibromide. It was explained by negatively shifted redox potential of I/I3, compared with those for Cl/Cl2 or Br/Br2.  相似文献   

14.
The influence of aminothiazole additives in acetonitrile solution of an I/I3 redox electrolyte on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′- bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized TiO2 solar cell was studied. The current–voltage characteristics were investigated under AM 1.5 (100 mW/cm2) for nine different aminothiazole compounds. The aminothiazole additives tested had varying influences on the solar cell performance. Most of the additives enhanced the open-circuit photovoltage (Voc), but reduced the short circuit photocurrent density (Jsc) of the solar cell. Both the physical and chemical properties of the aminothiazoles were computationally calculated in order to determine the reasons that the additive influenced solar cell performance. The larger the calculated partial charge of the nitrogen atom in the thiazole, the higher the Voc value. The Voc value increased as the dipole moment of aminothiazoles in acetonitrile increased. Moreover, the Voc of the solar cell also increased as the size of the aminothiazole molecules decreased. These results suggest that the electron donicity of the aminothiazole additives influenced the interaction with the TiO2 photoelectrode, which altered the dye-sensitized solar cell performance.  相似文献   

15.
The influence of alkylpyridines additive to an I/I3 redox electrolyte in acetonitrile on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell was studied. IV measurements were performed using more than 30 different alkylpyridines. The alkylpyridine additives showed a significant influence on the performance of the cell. All the additives decreased the short-circuit photocurrent (Jsc), but most of the alkylpyridines increased the open-circuit photovoltage (Voc) and fill factor (ff) of the solar cell. The results of the molecular orbital calculations suggest that the dipole moment of the alkylpyridine molecules correlate with the Jsc of the cell. These results also suggest that both the size and ionization energy of pyridines correlate with the Voc of the cell. Under AM 1.5 (100 mW/cm2), the highest solar energy conversion efficiency (η) of 7.6% was achieved by using 2-propylpyridine as an additive, which was more effective than the previously reported additive, 4-t-butylpyridine.  相似文献   

16.
This article reports the preparation of three-dimensional (3D) mesoporous zinc oxide (ZnO) films and their application in solar cells. The films were obtained through electrochemical deposition in DMSO solutions by using PS colloidal crystal as templates. The ZnO films with inverse opal (IO) structure were obtained after removing the templates by thermolysis. The ordered porous ZnO films were used to prepare hybrid solar cells by infiltrating the films with poly(3-hexylthiophene) (P3HT) or P3HT:ZnO nanocomposite. Results showed that the interpenetrating network of both ZnO(IO) and P3HT can form continuous pathways for electron and hole transport. By infiltrating a P3HT:ZnO nanocomposite into the porous ZnO films, the photocurrent of the solar cell can be dramatically improved. The cell shows the Voc and Isc of 462 mV and 444.3 μA/cm2, respectively. By using a 420 nm cutoff filter, the cell retains about 80% and 50% of its original Voc and Isc after continuous white-light illumination (100 mW/cm2) for 10 h. Stability of the device under above conditions was estimated to be 51 h.  相似文献   

17.
An extended study of c-Si cell performance under transient conditions for various concentration ratios, C, between 0.6 and 12.25 is presented. PV cell temperature, Tc, open-circuit voltage, Voc, and short-circuit current, Isc, were measured using an experimental set-up based on a solar light simulator. The dependence of Voc, Isc, dVoc/dTc, dIsc/dTc and rs on Tc was investigated against C. A model was developed to predict Tc. Generalised formulae were proposed for prediction of Voc and Isc. Theoretically obtained Tc and Voc profiles were compared with the measured ones. A good agreement was observed. The time constants of Voc and Tc profiles were determined experimentally for various C values and lie within ±5% from theoretically predicted time constants. The coefficient dVoc/dTc was determined for various C values. The results show a decrease in the absolute value of dVoc/dTc against C. A partial recovery of PV cell performance through a ventilation process was tried.  相似文献   

18.
When a CuInS2/CdS solar cell was fabricated by depositing CdS thin film with dopant In of 1.0 at% on ternary compound CuInS2 thin film with the lowest resistivity of 5.59 × 10−2 Ωcm, its best result was as follows: Voc = 461 mV, Isc = 26.9 mA, FF = 0.685, η = 5.66% under the illumination of 100 mW/cm2. And its series resistance and lattice mismatch was 5.1 Ω and 3.2%, respectively.Besides, a 4 layer structure solar cell of -CuInS2/high -CuInS2/high -CdS/low - CdS has been fabricated. When thickness of high - CuInS2 was 0.2 μm, its best result was as follows: Voc = 580 mV, Isc = 30.6 mA, FF = 0.697, η = 8.25%. An its series resistance and lattice mismatch were 4.3 Ω and 2.8%, respectively.  相似文献   

19.
New directions in photovoltaics depend very often on financial possibilities and new equipment. In this paper, we present the modification of a standard screen-printing technology by using an infrared (IR) furnace for forming a n+/p structure with phosphorus-doped silica paste on 100 cm2 multicrystalline silicon wafers. The solar cells were fabricated on 300 μm thick 1 Ω cm p-type multicrystalline Bayer silicon. The average results for 100 cm2 multicrystalline silicon solar cells are: Isc=2589 mA, Voc=599 mV, FF=0.74, Eff=11.5%. The cross-sections of the contacts metallized in the IR furnace, as determined by scanning electron microscopy, and the phosphorus profile measured by an electrochemical profiler are shown. IR processing offers many advantages, such as a small overall thermal budget, low power and time consumption, in terms of a cost-effective technology for the continuous preparation of solar cells.  相似文献   

20.
The influence of wafer thickness and surface texturing of silicon solar cells on cell results has been investigated using neighbouring multi-crystalline silicon wafers with thickness ranging from 150 to 350 μm and isotropic NaOH or acid etched. It was found experimentally that Voc decreases nearly 1.5% and Jsc decreases nearly 3%, resulting in a 4% relative decrease in efficiency, in halving the wafer thickness. These trends are independent of the front surface texturing.Front surface texturing, however, results in a 6% increase of Jsc and a nearly 6% increase in efficiency independent of the wafer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号