首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
谢辉  周震涛 《电源技术》2006,30(11):908-910
为了提高LiFePO4的电化学性能,分别采用在原料中添加导电炭黑(途径A)和对反应前驱体用环氧树脂进行包覆(途径B)的途径,通过高温固相反应合成了LiFePO4/C锂离子蓄电池复合正极材料,并用X-射线衍射、扫描电镜和恒电流充放电测试等方法对其晶体结构、表观形貌和电化学性能进行了研究。研究结果表明:所合成LiFePO4/C试样均为单一的橄榄石型晶体结构;通过途径B合成的LiFePO4/C材料,其炭黑分布更均匀,电性能更佳,以0.1C、1.0C以及2.0C倍率放电,该材料首次放电比容量分别为156.4mAh/g、145.7mAh/g和128.9mAh/g。  相似文献   

2.
掺杂Mg的LiFePO4电化学性能研究   总被引:11,自引:2,他引:9  
通过高能球磨制备前驱体,采用煅烧法合成锂离子电池正极材料磷酸铁锂(LiFePO4),采用充放电性能测试、XRD表征材料性能.实验证明:LiFcPO4具有3.45 V(vs.Li/Li )的放电电压平台.在相同的工艺条件下合成掺杂和来掺杂镁的LiFePO4样品,测试了它们的电化学性能,掺杂少量Mg2 后的LiFePO4晶体结构并未发生变化,且较未掺杂的LiFePO4具有更好的电化学性能.  相似文献   

3.
软模板剂对LiFePO4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
杨书廷  刘玉霞  尹艳红  王辉 《电池》2007,37(2):95-97
采用软模板-固相合成法合成橄榄石型LiFePO4/C正极材料.通过XRD、SEM以及交流阻抗等对材料的晶体结构和电化学性能进行研究,并研究了葡萄糖、丙烯酰胺和乳酸亚铁作为软模板剂对材料性能的影响.结果表明:以葡萄糖为软模板剂合成的LiFePO4/C材料的首次放电比容量高达140.2 mAh/g,循环20次后,放电容量无明显的衰减现象.  相似文献   

4.
正极材料LiFePO4/C的制备与性能   总被引:1,自引:0,他引:1  
通过机械活化、高温固相反应,合成了LiFePO4/C复合正极材料.XRD、粒度分布和SEM表明:材料为纯相的橄榄石型,碳包覆使材料的二次颗粒尺寸有所减小.电化学性能测试结果表明:碳包覆能有效降低材料的电化学极化.在2.6~4.5 V的充放电范围内,LiFePO4/C以0.2 C放电的首次可逆容量为135.41 mAh/...  相似文献   

5.
以三价铁为铁源,柠檬酸为碳源,分别以蒸馏水、酒精和乙二醇为溶剂,采用溶胶凝胶一步烧结法制备LiFePO4/C正极材料。采用X射线衍射、扫描电镜和拉曼光谱等测试手段,对LiFePO4/C的微观结构进行了表征,并测试了材料的电化学性能。研究结果表明,不同溶剂条件下,均能得到较纯的LiFePO4相。其中以蒸馏水为溶剂制得的LiFePO4/C具有相对较好的电化学性能。进一步对其溶胶过程进行pH值调节发现,当pH值为2时合成的LiFePO4/C颗粒分布均匀。其电化学性能改善明显,0.1 C容量提高到了130 mAh/g,1 C比容量为105 mAh/g(1 C=170 mA/g)。  相似文献   

6.
LiFePO4/C复合正极材料的结构与性能   总被引:21,自引:7,他引:21  
吕正中  周震涛 《电池》2003,33(5):269-271
考察LiFePO4/C复合正极材料的结构与性能,采用高温固相法制备了纯的LiFePO4和复合型LiFePO4/C锂离子电池正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)、原子吸收光谱(AAS)等方法对所得样品的晶体结构、表观形貌、粒径大小和元素组成等进行了分析研究.实验结果表明,所得LiFePO4和LiFePO4/C均为单一的橄榄石型晶体结构,其中,以葡萄糖作为碳添加剂所得到的LiFePO4/C复合材料的电性能最佳.该材料具有良好的充放电循环可逆性能和高温电性能,以C/10和1 C的倍率充放电,首次放电比容量分别为156.5 mAh/g、147.8 mAh/g,充放电循环10次后的平均放电比容量分别为155.3 mAh/g、145.2mAh/g.  相似文献   

7.
糖类作为碳源对LiFePO4/C正极材料性能的影响   总被引:1,自引:1,他引:0  
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4/C正极材料,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学手段对目标材料进行了结构表征和性能测试.考察了葡萄糖和蔗糖作为碳源对LiFePO4/C正极材料性能的影响.结果表明,以葡萄糖作为碳源的正极材料具有优良的电化学性能,首次放电比容量达136.3 mAh/g,远远高于纯的LiFePO4正极材料,随着循环次数的增加,材料的放电比容量逐渐增加,然后趋于稳定.循环30次后,比容量为139.6 mAh/g.  相似文献   

8.
为了改进LiFeP04材料的电化学性能,以乙炔黑、柠檬酸、蔗糖三种物质作为碳源,采用高温固相法制备了LiFePO4,LiFePO4/C复合正极材料.通过XRD、SEM、CV测试和恒电流充放电等方法研究了材料的结构与电化学性能.测试结果显示,采用蔗糖为碳源制备的LiFePO4/C材料具有最好的充放电性能.在室温和0.2 ...  相似文献   

9.
以FePO4为铁源、Li2CO3为锂源、聚丙烯为还原剂和碳源,采用一步固相法合成了LiFePO4/C复合材料.研究了铁源FePO4 的颗粒尺寸对复合材料电化学性能的影响.采用X射线衍射(XRD)、扫描电镜(SEM)对合成产物的晶体结构、表面形貌进行了表征和研究,通过充放电测试和电化学阻抗谱(EIS)对材料的电化学性能进行测试和分析.结果表明:FePO4颗粒的大小影响着合成产物颗粒的大小,从而影响了LiFePO4/C的充放电性能.  相似文献   

10.
根据影响LiFePO4正极材料电化学性能的四个因素:锂铁比、葡萄糖加入量、焙烧温度、焙烧时间,设计出三水平的正交实验,使用改进的固相法,找出了LiFePO4的优化合成条件并合成出具有优良电化学性能的LiFePO4/C正极材料,此方法不使用球磨机,有利于工业化生产.使用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM...  相似文献   

11.
唐红  郭孝东  刘恒  唐艳  钟本和 《电源技术》2011,35(3):267-270
以三价铁(Fe2O3)为铁源,采用半固相-碳热还原法制备UFePO4/C正极材料,对LiFePO4的铁位进行高价金属离子(Nb5+)掺杂制得LiFe1-xNbxPO4/C(x=0、0.01、0.03、0.05、0.07)复合正极材料.X射线衍射分析材料的晶型结构发现掺杂一定量的金属离子不会改变材料的晶型结构.对材料进行...  相似文献   

12.
以聚乙二醇、乙炔黑、甘氨酸、葡萄糖作为不同碳源,采用溶胶-凝胶法制备LiFePO_4/C复合正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、热重分析等分别对合成产物进行表征,用恒电流充放电测试分析了LiFePO_4/C样品的电化学性能。结果表明,引入碳源所制得的材料具有单一的橄榄石型晶体结构,与纯相LiFePO_4相比,以甘氨酸为碳源和络合剂制备的LiFePO_4/C具有更小的颗粒尺寸和优异的电化学性能。样品的平均颗粒尺寸在1.7μm并且分布均匀,在0.2 C下首次放电比容量有163.5 m Ah/g。在0.5 C、1 C下循环20次后比容量分别保持为130.1和112.3 m Ah/g,循环稳定性优异。  相似文献   

13.
利用固相法,采用Re3+(R e=La、Nd、Y)三种不同的稀土金属离子对LiFePO4/C进行掺杂。用XRD、SEM、电子电导率测试和电化学测试对材料的结构和性能进行分析表征。研究结果表明:少量掺杂后未影响到LiFePO4的晶体结构。三种掺杂试样中以掺杂Y3+的电化学性能最好,在0.1 C倍率下,第三次循环的放电比容量为142.09 m Ah/g,充放电效率为99.02%,在0.5 C和1 C倍率下放电比容量仍有133.38、116.91 m Ah/g。引入稀土离子掺杂是提高LiFePO 4正极材料电化学性能的有效方法。  相似文献   

14.
以三价铁制备LiFePO4/C复合材料及其电化学性能   总被引:1,自引:0,他引:1  
王冠  江志裕 《电池》2007,37(3):195-198
以Fe203、FeP04为铁源,分别采用蔗糖和活性铁粉为还原剂,设计了4条反应路线,利用热还原法制备了LiFePO4/C复合材料.用XRD和SEM对晶体结构及表面形貌进行了研究,用循环伏安法、充放电测试和交流阻抗法研究了电化学性能.制备的LiFeP04/C复合材料具有较好的电化学性能,以FePO4和活性铁粉为原料制得的复合材料性能最佳,以0.2 C充放电,首次放电比容量为151 mAh/g,第200次循环的放电比容量仍能保持99.5%.  相似文献   

15.
为了提高LiFePO4的充放电性能,通过高温固相法合成了Li0.98M0.02FePO4/C(M=Cr、W)及Li1.03M0.02Fe0.98PO4/C(M=Zr、Ni)两类橄榄石型正极材料。运用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射X射线谱(EDX)和电化学测试对合成产物的晶体结构、颗粒形貌和电化学性能进行了表征。结果表明:Li0.98Cr0.02FePO4/C的放电比容量最高达到157.3mAh/g,且多次循环后容量几乎无衰减;在大电流充放电倍率下,材料依然能保持优良的循环性能,Li0.98W0.02FePO4/C首次放电比容量可达130.2mAh/g,10次循环后容量保持率为97%。离子掺杂和碳包覆改性能有效地提高LiFePO4的比容量和循环性能。  相似文献   

16.
采用XRD、ICP、SEM和电化学方法,研究了Sr2+掺杂对正极材料LiFePO4的结构、形貌和电化学性能的影响.掺杂适量的Sr2+不会改变LiFePO4的橄榄石结构,可提高电导率,抑制在充放电时的极化.在室温下,LiSr0.012Fe0.988PO4/C以0.2 C循环的初始比容量为142 mAh/g,循环50次,比容量未衰减;以3.0 C循环时,LiSr0.012Fe0.988PO4/C仍有较高的比容量和较好的循环性能;在60 ℃下以0.5 C循环,LiSr0.012Fe0.988PO4/C第60次循环的比容量为147 mAh/g.  相似文献   

17.
以炭黑为碳源,采用喷雾干燥一碳热还原法(SDCTM)制备了多孔隙球形LiFePO4/C正极材料。研究了不同炭黑加入量对LiFePO4/C结晶性能、颗粒形貌、放电比容量和循环稳定性等性能的影响。结果表明:炭黑含量的增加有利于优化一次颗粒形貌,促进LiFePO4的结晶,提高其放电比容量、首次放电效率及容量保持率等电化学性能。当炭黑加入量X=2.5时,球形LiFePO4/C正极材料粒径在10μm左右,其一次颗粒粒径平均在200n/n左右,比表面积达4.15m2/g,碳含量12.0%wt。在室温下,0.1C充放电下,放电比容量为131.7mAh/g,首次放电效率为90.8%,30次循环后容量保持率为96.2%。在4C充放电下,仍有65.7mAh/g的可逆比容量,且显示了良好的充放电性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号