首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
何龙  肖博  顾新霞 《工业催化》2015,23(2):112-115
研究负载在Al2O3载体上的Pd催化剂对精C5饱和加氢反应的性能。以工厂精C5为原料,考察载体焙烧温度、Pd负载量和催化剂制备工艺对催化剂性能的影响。结果表明,载体最佳焙烧温度为700℃,Pd最佳负载质量分数为0.3%,Pd最佳负载时间为4 h,催化剂最佳焙烧温度为500℃,催化剂最佳焙烧时间为4 h,以此条件制备的催化剂进行C5饱和加氢评价,加氢效率不低于94%。  相似文献   

2.
研究了磷和水热处理联合改性对HZSM-5分子筛的物化性能、表面酸性以及催化环己烯水合制备环己醇性能的影响.结果表明,磷改性联合水热处理改变了催化剂的表面酸强度,减少了酸中心数,加入适量磷,有利于提高催化环己烯水合制备环己醇的反应活性.催化剂改性的最佳条件:磷负载质量分数0.8%,水热处理温度570℃,水热处理时间2 h...  相似文献   

3.
水热处理条件对Hβ沸石醚化活性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
赵尹  王海彦  马骏  魏民 《化工学报》2004,55(9):1455-1458
采用水热处理的方法对Hβ沸石改性,制备出改性Hβ沸石醚化催化剂.在温度70℃、压力0.8 MPa、醇烯摩尔比1.05、空速 1.0 h-1的反应条件下对改性催化剂进行醚化活性评价.系统考察了水热处理条件对Hβ沸石催化剂醚化活性的影响.结果表明,随着处理苛刻度的增大,催化剂的醚化活性呈现先升后降的趋势.水热处理温度对催化剂活性的影响最大.在300℃、1h、氮气与水蒸气分压比1.0、水空速0.4 h-1的条件下,水热处理提高了Hβ沸石的催化活性,叔碳烯烃的转化率为57.48 %.水热处理Hβ沸石经酸洗后醚化活性进一步提高,叔碳烯烃的转化率达59.17%.对经过水热处理后的Hβ沸石进行金属Mo改性,叔碳烯烃转化率达到60.81%.  相似文献   

4.
水热处理磷改性HZSM-5催化剂的研究   总被引:1,自引:1,他引:0  
施岩  王海彦  李剑 《工业催化》2008,16(5):24-27
以催化裂化轻汽油馏分为原料,以水热处理磷改性HZSM-5为催化剂,在小型固定床反应装置上考察了水热处理改性方法制备催化剂的催化裂解性能。通过对HZSM-5分子筛催化剂水热处理,调变其酸性,达到多产丙烯的目的。确定催化剂改性最佳条件为:水热处理温度650 ℃,处理时间2 h,处理空速2 h-1。HZSM-5水热处理后,明显改善催化剂的水热稳定性和活性,提高丙烯选择性。  相似文献   

5.
以氧化镍、氧化铁为活性组分、陶粒为载体采用浸渍法制备催化剂。对单组分和复合组分催化剂对制药二级生化出水COD去除率进行研究。对催化剂的焙烧温度、焙烧时间以及催化剂投加量和原水pH这些对臭氧催化氧化较为显著的因素进行了研究。结果表明,复合组分催化剂效果好于单组分催化剂,Ni_xO-F_xO/陶粒催化剂最佳焙烧温度为600℃、焙烧时间为5 h、最佳催化剂投加量为8 g/L、反应初始pH在弱碱性条件下更有利于反应进行,最佳条件下出水COD可达到80%左右。  相似文献   

6.
在固定床反应器中,以HZSM-5为催化剂,考察反应温度和原料质量空速等工艺条件对甲醇制丙烯反应性能的影响。研究结果显示,随着反应温度的升高,乙烯及丙烯选择性均有所升高,但较高的反应温度会使催化剂活性快速降低;当原料质量空速增大时,乙烯及丙烯选择性均有所下降。研究表明最佳的工艺条件为反应温度为460℃,质量空速为2 h-1。对经过水热处理与未经过水热处理的催化剂性能进行比较,结果表明,经水热处理的催化剂,丙烯的选择性和催化剂的寿命分别由未经水热处理的40.1%和80 h提高至48.3%和170 h。  相似文献   

7.
对气相甲醇氧化羰基化合成碳酸二甲酯反应中的Cu(Ⅰ)分子筛催化剂进行了活性评价,考察了分子筛载体、催化剂制备温度和制备时间对反应活性的影响,并对反应条件进行了优化.结果表明,Y型分子筛为载体催化活件最好.Cu(Ⅰ)Y催化剂,其最佳制备温度为650℃,制备时间为4 h,反应温度为140℃.在O_2流量为1 mL/min时,随着CO/O_2摩尔比值的提高,CMeOH及STY均呈先上升后下降的趋势,而SDMC则呈上升趋势,最佳原料气摩尔比CO/O_2=10/1.  相似文献   

8.
以氧化镍、氧化铁为活性组分、陶粒为载体采用浸渍法制备催化剂。对单组分和复合组分催化剂对制药二级生化出水COD去除率进行研究。对催化剂的焙烧温度、焙烧时间以及催化剂投加量和原水pH这些对臭氧催化氧化较为显著的因素进行了研究。结果表明,复合组分催化剂效果好于单组分催化剂,Ni_xO-F_xO/陶粒催化剂最佳焙烧温度为600℃、焙烧时间为5 h、最佳催化剂投加量为8 g/L、反应初始pH在弱碱性条件下更有利于反应进行,最佳条件下出水COD可达到80%左右。  相似文献   

9.
刘东升 《工业催化》2016,24(10):56-59
研制出适用于移动床丙烷脱氢装置的Pt-Sn-K/γ-Al_2O_3催化剂,并考察焙烧温度、浸渍温度和烘干时间对催化剂性能的影响。结果表明,焙烧温度对载体强度影响较大,随着焙烧温度升高,载体强度迅速下降,但焙烧温度对载体磨耗率几乎没有影响。最佳的载体焙烧温度为600℃,浸渍温度为20℃,烘干时间为4 h。模拟移动床寿命评价结果表明,催化剂单程寿命接近60 h。  相似文献   

10.
在体相催化剂制备过程中对其进行了水热处理,采用BET、XRD、SEM、TEM、强度测定、堆积密度测定等分析手段对催化剂物化性质进行表征,考察了水热处理对体相催化剂物化性质影响。分析结果表明,水热处理1~5 h,体相催化剂孔容、孔径和比表面积增加,堆积密度降低,可利用的活性中心数量大量增多;水热处理超过8 h,孔容和孔径继续增大,比表面积没有明显变化,催化剂压碎强度明显降低。评价结果表明,体相催化剂经水热处理后,提高了体相催化剂的超深度加氢脱硫活性和芳烃饱和性能,相同工艺条件下加工处理劣质柴油时,反应温度比水热处理前降低了6℃。  相似文献   

11.
以改性Y分子筛和氧化铝为载体、Ni-W为活性组分,采用等体积浸渍法制备催化剂,在不同的温度下进行热处理,通过XPS、HRTEM、SEM-EDS等分析方法对其进行表征,考察了热处理条件对加氢裂化催化剂性能的影响。结果表明,当催化剂热处理温度为500℃时,活性组分的硫化度达到最大值,在载体表面均匀分布。同时,WS2片晶层数较高,片晶长度较短,产生更多的加氢活性位。热处理温度在500℃时,催化剂的裂化性能达到最佳状态。  相似文献   

12.
以水滑石为载体,制备了负载铜离子的非均相CWPO催化剂。实验确定了催化剂的最佳制备条件是浸渍浓度0.05 mol/L,浸渍时间10 h,煅烧时间0.5 h,煅烧温度400℃。采用最佳条件制备的负载铜离子的水滑石对亚甲基蓝染料进行脱色处理,利用单因素实验考察了负载铜离子的水滑石用量、亚甲基蓝溶液初始浓度、p H值、反应时间、过氧化氢用量等条件对脱色率的影响。结果表明,负载铜离子的水滑石催化剂最佳催化条件是催化剂用量为30 g/L,过氧化氢用量为20 m L/L,亚甲基蓝初始浓度20 mg/L,催化时间1 h,p H值为6,脱色率达到97.6%,具有良好的应用前景。对照实验表明,负载金属离子可显著提高水滑石催化剂的催化效果。  相似文献   

13.
以活性炭为载体,用沉淀法制备了Ni-Co-Fe三元催化剂,用于催化棕榈油加氢制备硬化油。考察了活性炭载体、催化剂制备过程中Ni含量、焙烧温度及时间、还原温度及时间对催化剂加氢活性的影响。结果表明,最佳反应条件为:Ni负载量35%,氮气气氛下400℃下焙烧2 h,400℃下还原2 h。最佳工艺条件下,能使棕榈油碘值能降到0.9左右,基本达到工业要求。  相似文献   

14.
体相催化剂经水热处理后,催化剂孔结构发生了改变,孔容、孔径和比表面积增加。采用小型加氢装置加工处理不同超深度脱硫难度的柴油原料,对水热处理后的催化剂进行超深度加氢脱硫活性评价。评价结果表明,体相催化剂经水热处理后,提高体相催化剂的超深度加氢脱硫活性和芳烃饱和性能,加工处理超深度脱硫难度大的劣质柴油时,加氢活性提高更加明显。以直馏柴油为原料,在相同工艺条件下,精制油中硫含量小于10μg/g时,对比没经水热处理的催化剂,水热处理后催化剂的反应温度降低了5℃。而以催化柴油为原料,在相同工艺条件下,精制油中硫含量小于10μg/g时,水热处理后催化剂的反应温度比水热处理前的反应温度降低了13℃。水热处理后的体相催化剂具有良好的活性稳定性。  相似文献   

15.
采用Stober法制备SiO2载体,在不同条件下采用浸渍法制备Zr(SO4)2/SiO2催化剂,并用于合成乙酸辛酯,对催化剂进行了表征,对反应条件进行了优化. 结果表明,在焙烧温度250℃及Zr(SO4)2负载量20%条件下所制催化剂最稳定且Zr(SO4)2在SiO2载体中分散最均匀,250℃下焙烧3 h催化效果最好. 最佳反应条件为催化剂用量为辛醇质量的3%,乙酸与辛醇摩尔比1.2:1,温度120℃,时间3 h,此时辛醇转化率达97.82%,反应选择性达92.53%.  相似文献   

16.
通过对云南深蓝黑色、蓝绿色电气石的热处理一系列实验研究,着重探索了工艺中的气氛、最高温度以及恒温时间等因素对改善其颜色及透明度的影响,并对热处理前后的谱学特征、外观、包裹体特征进行了对比。实验结果表明,温度在550℃~700℃,恒温3h或5h,在氧化气氛的条件下,可以不同程度的改善深色系列碧玺的颜色和透明度,其中,温度650℃,恒温3h,深蓝黑色碧玺变成鲜亮的绿色,透明度得到很大的提高,而且没有出现裂开等负面效应。  相似文献   

17.
采用燃烧法制备MoO_3/ZrO_2催化剂,该催化剂由于具有比表面积大、粒径小的优点,表现出很高的低温耐硫甲烷化活性。通过考察硫化工艺条件的影响发现,硫化过程中硫化时间、硫化压力、硫化氢浓度的影响不大,而硫化温度的影响较明显,300℃下恒温硫化效果最佳,表征结果表明,300℃下恒温硫化可以使催化剂完全硫化,得到较多的Mo S2晶格条纹,有利于提高催化剂的甲烷化活性。恒温硫化时,硫化温度低于300℃时,催化剂硫化不完全,形成的Mo S2晶格条纹较少;硫化温度过高会导致催化剂过度硫化并发生团聚,从而导致催化剂的耐硫甲烷化活性降低。分步硫化时目标温度为400℃时效果最佳,且与300℃恒温硫化的效果接近,对于MoO_3/ZrO_2催化剂,可选择300℃恒温硫化,适宜的硫化条件为:硫化压力0.1 MPa,硫化温度300℃,硫化氢浓度3%H_2S/H_2,硫化时间4 h。  相似文献   

18.
采用负载型Ru/Al_2O_3催化剂对双酚A(BPA)加氢制备氢化双酚A(HBPA)进行了研究,考察了催化剂煅烧温度、煅烧时间、还原温度、还原时间、催化剂负载量等制备条件对反应的影响,确定催化剂最佳制备条件为:煅烧温度200℃、煅烧时间5 h、还原温度100℃、还原时间1 h,Ru负载量(w)3%。同时考察了溶剂类型、催化剂用量、反应温度、反应压力等条件对催化加氢反应的影响,确定催化加氢反应的最佳工艺条件为:溶剂选用异丙醇、催化剂用量3%、反应温度160℃、反应压力4.5MPa、反应时间4 h。在上述最佳条件下,双酚A的转化率为100%,氢化双酚A的选择性为97.08%。  相似文献   

19.
制备了300 ℃、350 ℃、400 ℃和500 ℃不同水热处理温度下的Zn/HZSM-5催化剂,并用于FCC汽油馏分的芳构化反应。考察了水热处理温度对芳构化反应性能的影响,并与吡啶吸附红外光谱(FT-IR)相关联,研究了水热处理温度对催化剂表面酸性的影响。结果表明,水热处理Zn/HZSM-5的芳构化活性稳定性得以改善, 与未经水热处理的催化剂相比,400 ℃水热处理的Zn(2%)/HZSM-5催化剂芳构化反应36 h时,芳烃质量分数仍高达74.25%。随着水热处理温度的升高, B酸酸中心数在300~400 ℃变化不大,500 ℃显著减少,L酸酸中心数升高,400 ℃达到最大值后呈降低趋势,烯烃转化率、烷烃转化率和产品芳烃含量升高,水热处理400 ℃时均达到最大值,分别为83.62%、95.44%和92.23%,表明此时B酸中心和L酸中心比例协调性最佳。  相似文献   

20.
采用燃烧法制备MoO3/ZrO2催化剂,该催化剂由于具有比表面积大、粒径小的优点,表现出很高的低温耐硫甲烷化活性。通过考察硫化工艺条件的影响发现,硫化过程中硫化时间、硫化压力、硫化氢浓度的影响不大,而硫化温度的影响较明显,300℃下恒温硫化效果最佳,表征结果表明,300℃下恒温硫化可以使催化剂完全硫化,得到较多的MoS2晶格条纹,有利于提高催化剂的甲烷化活性。恒温硫化时,硫化温度低于300℃时,催化剂硫化不完全,形成的MoS2晶格条纹较少;硫化温度过高会导致催化剂过度硫化并发生团聚,从而导致催化剂的耐硫甲烷化活性降低。分步硫化时目标温度为400℃时效果最佳,且与300℃恒温硫化的效果接近,对于MoO3/ZrO2催化剂,可选择300℃恒温硫化,适宜的硫化条件为:硫化压力0.1 MPa,硫化温度300℃,硫化氢浓度3% H2S/H2,硫化时间4 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号