共查询到20条相似文献,搜索用时 0 毫秒
1.
Defeng Wang Daniel S Yeung Eric C C Tsang 《Neural Networks, IEEE Transactions on》2007,18(5):1453-1462
The support vector machine (SVM) has been demonstrated to be a very effective classifier in many applications, but its performance is still limited as the data distribution information is underutilized in determining the decision hyperplane. Most of the existing kernels employed in nonlinear SVMs measure the similarity between a pair of pattern images based on the Euclidean inner product or the Euclidean distance of corresponding input patterns, which ignores data distribution tendency and makes the SVM essentially a "local" classifier. In this paper, we provide a step toward a paradigm of kernels by incorporating data specific knowledge into existing kernels. We first find the data structure for each class adaptively in the input space via agglomerative hierarchical clustering (AHC), and then construct the weighted Mahalanobis distance (WMD) kernels using the detected data distribution information. In WMD kernels, the similarity between two pattern images is determined not only by the Mahalanobis distance (MD) between their corresponding input patterns but also by the sizes of the clusters they reside in. Although WMD kernels are not guaranteed to be positive definite (pd) or conditionally positive definite (cpd), satisfactory classification results can still be achieved because regularizers in SVMs with WMD kernels are empirically positive in pseudo-Euclidean (pE) spaces. Experimental results on both synthetic and real-world data sets show the effectiveness of "plugging" data structure into existing kernels. 相似文献
2.
3.
An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels 总被引:3,自引:0,他引:3
Lee M.M.S. Keerthi S.S. Chong Jin Ong DeCoste D. 《Neural Networks, IEEE Transactions on》2004,15(3):750-757
In this paper, we give an efficient method for computing the leave-one-out (LOO) error for support vector machines (SVMs) with Gaussian kernels quite accurately. It is particularly suitable for iterative decomposition methods of solving SVMs. The importance of various steps of the method is illustrated in detail by showing the performance on six benchmark datasets. The new method often leads to speedups of 10-50 times compared to standard LOO error computation. It has good promise for use in hyperparameter tuning and model comparison. 相似文献
4.
Vojislav Kecman 《Optical Memory & Neural Networks》2016,25(4):203-218
Paper presents a unique novel online learning algorithm for eight popular nonlinear (i.e., kernel), classifiers based on a classic stochastic gradient descent in primal domain. In particular, the online learning algorithm is derived for following classifiers: L1 and L2 support vector machines with both a quadratic regularizer w t w and the l 1 regularizer |w|1; regularized huberized hinge loss; regularized kernel logistic regression; regularized exponential loss with l 1 regularizer |w|1 and Least squares support vector machines. The online learning algorithm is aimed primarily for designing classifiers for large datasets. The novel learning model is accurate, fast and extremely simple (i.e., comprised of few coding lines only). Comparisons of performances of the proposed algorithm with the state of the art support vector machine algorithm on few real datasets are shown. 相似文献
5.
Tanasanee Phienthrakul Boonserm Kijsirikul 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2010,14(7):681-699
Kernel functions are used in support vector machines (SVM) to compute inner product in a higher dimensional feature space.
SVM classification performance depends on the chosen kernel. The radial basis function (RBF) kernel is a distance-based kernel
that has been successfully applied in many tasks. This paper focuses on improving the accuracy of SVM by proposing a non-linear
combination of multiple RBF kernels to obtain more flexible kernel functions. Multi-scale RBF kernels are weighted and combined.
The proposed kernel allows better discrimination in the feature space. This new kernel is proved to be a Mercer’s kernel.
Furthermore, evolutionary strategies (ESs) are used for adjusting the hyperparameters of SVM. Training accuracy, the bound
of generalization error, and subset cross-validation on training accuracy are considered to be objective functions in the
evolutionary process. The experimental results show that the accuracy of multi-scale RBF kernels is better than that of a
single RBF kernel. Moreover, the subset cross-validation on training accuracy is more suitable and it yields the good results
on benchmark datasets. 相似文献
6.
This paper presents kernel regularization information criterion (KRIC), which is a new criterion for tuning regularization parameters in kernel logistic regression (KLR) and support vector machines (SVMs). The main idea of the KRIC is based on the regularization information criterion (RIC). We derive an eigenvalue equation to calculate the KRIC and solve the problem. The computational cost for parameter tuning by the KRIC is reduced drastically by using the Nystro/spl uml/m approximation. The test error rate of SVMs or KLR with the regularization parameter tuned by the KRIC is comparable with the one by the cross validation or evaluation of the evidence. The computational cost of the KRIC is significantly lower than the one of the other criteria. 相似文献
7.
Successive overrelaxation for support vector machines 总被引:36,自引:0,他引:36
Successive overrelaxation (SOR) for symmetric linear complementarity problems and quadratic programs is used to train a support vector machine (SVM) for discriminating between the elements of two massive datasets, each with millions of points. Because SOR handles one point at a time, similar to Platt's sequential minimal optimization (SMO) algorithm (1999) which handles two constraints at a time and Joachims' SVM(light) (1998) which handles a small number of points at a time, SOR can process very large datasets that need not reside in memory. The algorithm converges linearly to a solution. Encouraging numerical results are presented on datasets with up to 10 000 000 points. Such massive discrimination problems cannot be processed by conventional linear or quadratic programming methods, and to our knowledge have not been solved by other methods. On smaller problems, SOR was faster than SVM(light) and comparable or faster than SMO. 相似文献
8.
Kiri L. Wagstaff Michael Kocurek Dominic Mazzoni Benyang Tang 《Data mining and knowledge discovery》2010,20(1):53-69
Support vector machines (SVMs) have good accuracy and generalization properties, but they tend to be slow to classify new
examples. In contrast to previous work that aims to reduce the time required to fully classify all examples, we present a
method that provides the best-possible classification given a specific amount of computational time. We construct two SVMs:
a “full” SVM that is optimized for high accuracy, and an approximation SVM (via reduced-set or subset methods) that provides
extremely fast, but less accurate, classifications. We apply the approximate SVM to the full data set, estimate the posterior
probability that each classification is correct, and then use the full SVM to reclassify items in order of their likelihood
of misclassification. Our experimental results show that this method rapidly achieves high accuracy, by selectively devoting
resources (reclassification) only where needed. It also provides the first such progressive SVM solution that can be applied
to multiclass problems. 相似文献
9.
Mathias M. Adankon Author Vitae Mohamed Cheriet Author Vitae 《Pattern recognition》2011,44(9):2220-2230
In this paper, we propose to reinforce the Self-Training strategy in semi-supervised mode by using a generative classifier that may help to train the main discriminative classifier to label the unlabeled data. We call this semi-supervised strategy Help-Training and apply it to training kernel machine classifiers as support vector machines (SVMs) and as least squares support vector machines. In addition, we propose a model selection strategy for semi-supervised training. Experimental results on both artificial and real problems demonstrate that Help-Training outperforms significantly the standard Self-Training. Moreover, compared to other semi-supervised methods developed for SVMs, our Help-Training strategy often gives the lowest error rate. 相似文献
10.
改进的支持向量机分类算法 总被引:1,自引:0,他引:1
在研究了标准SVM分类算法后,本文提出了一种快速的支持向量机分类方法.该方法通过解决两类相关的SVM问题,找到两个非平行的平面,其中每个平面靠近其相应的类样本点,远离另一类样本点,最后通过这两个平面找到一个将两类样本分开的最优平面.在处理非线性情况下,引入一种快速核函数分类方法.使用该算法可以使分类的速度得到很大提高,针对实际数据集的实验表明了该算法的有效性. 相似文献
11.
Distributed support vector machines 总被引:2,自引:0,他引:2
Navia-Vazquez A. Gutierrez-Gonzalez D. Parrado-Hernandez E. Navarro-Abellan J.J. 《Neural Networks, IEEE Transactions on》2006,17(4):1091-1097
A truly distributed (as opposed to parallelized) support vector machine (SVM) algorithm is presented. Training data are assumed to come from the same distribution and are locally stored in a number of different locations with processing capabilities (nodes). In several examples, it has been found that a reasonably small amount of information is interchanged among nodes to obtain an SVM solution, which is better than that obtained when classifiers are trained only with the local data and comparable (although a little bit worse) to that of the centralized approach (obtained when all the training data are available at the same place). We propose and analyze two distributed schemes: a "na/spl inodot//spl uml/ve" distributed chunking approach, where raw data (support vectors) are communicated, and the more elaborated distributed semiparametric SVM, which aims at further reducing the total amount of information passed between nodes while providing a privacy-preserving mechanism for information sharing. We show the feasibility of our proposal by evaluating the performance of the algorithms in benchmarks with both synthetic and real-world datasets. 相似文献
12.
We propose new support vector machines (SVMs) that incorporate the geometric distribution of an input data set by associating each data point with a possibilistic membership, which measures the relative strength of the self class membership. By using a possibilistic distance measure based on the possibilistic membership, we reformulate conventional SVMs in three ways. The proposed methods are shown to have better classification performance than conventional SVMs in various tests. 相似文献
13.
Fuzzy support vector machines 总被引:151,自引:0,他引:151
Chun-Fu Lin Sheng-De Wang 《Neural Networks, IEEE Transactions on》2002,13(2):464-471
A support vector machine (SVM) learns the decision surface from two distinct classes of the input points. In many applications, each input point may not be fully assigned to one of these two classes. In this paper, we apply a fuzzy membership to each input point and reformulate the SVMs such that different input points can make different contributions to the learning of decision surface. We call the proposed method fuzzy SVMs (FSVMs). 相似文献
14.
Minh Hoai Nguyen Author Vitae Fernando de la Torre Author Vitae 《Pattern recognition》2010,43(3):584-591
Selecting relevant features for support vector machine (SVM) classifiers is important for a variety of reasons such as generalization performance, computational efficiency, and feature interpretability. Traditional SVM approaches to feature selection typically extract features and learn SVM parameters independently. Independently performing these two steps might result in a loss of information related to the classification process. This paper proposes a convex energy-based framework to jointly perform feature selection and SVM parameter learning for linear and non-linear kernels. Experiments on various databases show significant reduction of features used while maintaining classification performance. 相似文献
15.
In classification tasks, active learning is often used to select out a set of informative examples from a big unlabeled dataset. The objective is to learn a classification pattern that can accurately predict labels of new examples by using the selection result which is expected to contain as few examples as possible. The selection of informative examples also reduces the manual effort for labeling, data complexity, and data redundancy, thus improves learning efficiency. In this paper, a new active learning strategy with pool-based settings, called inconsistency-based active learning, is proposed. This strategy is built up under the guidance of two classical works: (1) the learning philosophy of query-by-committee (QBC) algorithm; and (2) the structure of the traditional concept learning model: from-general-to-specific (GS) ordering. By constructing two extreme hypotheses of the current version space, the strategy evaluates unlabeled examples by a new sample selection criterion as inconsistency value, and the whole learning process could be implemented without any additional knowledge. Besides, since active learning is favorably applied to support vector machine (SVM) and its related applications, the strategy is further restricted to a specific algorithm called inconsistency-based active learning for SVM (I-ALSVM). By building up a GS structure, the sample selection process in our strategy is formed by searching through the initial version space. We compare the proposed I-ALSVM with several other pool-based methods for SVM on selected datasets. The experimental result shows that, in terms of generalization capability, our model exhibits good feasibility and competitiveness. 相似文献
16.
为提高含有异常值数据集的学习性能,对基于支持向量机的鲁棒算法进行了研究,深入分析了异常值降低标准支持向量机推广能力的本质原因,从基于支持向量机的异常值检测和抑制异常值对支持向量机的影响两个方面,较为系统地回顾了国内外在该领域的研究发展现状和最新研究进展,其中包括各种算法的基本思想和主要特点.归纳总结了支持向量机关于异常值问题的主要研究内容、方法、研究成果以及存在的问题,并进一步提出了在应用方面的研究方向. 相似文献
17.
Hidden space support vector machines 总被引:7,自引:0,他引:7
Li Zhang Weida Zhou Licheng Jiao 《Neural Networks, IEEE Transactions on》2004,15(6):1424-1434
Hidden space support vector machines (HSSVMs) are presented in this paper. The input patterns are mapped into a high-dimensional hidden space by a set of hidden nonlinear functions and then the structural risk is introduced into the hidden space to construct HSSVMs. Moreover, the conditions for the nonlinear kernel function in HSSVMs are more relaxed, and even differentiability is not required. Compared with support vector machines (SVMs), HSSVMs can adopt more kinds of kernel functions because the positive definite property of the kernel function is not a necessary condition. The performance of HSSVMs for pattern recognition and regression estimation is also analyzed. Experiments on artificial and real-world domains confirm the feasibility and the validity of our algorithms. 相似文献
18.
Linear programming support vector machines 总被引:4,自引:0,他引:4
Based on the analysis of the conclusions in the statistical learning theory, especially the VC dimension of linear functions, linear programming support vector machines (or SVMs) are presented including linear programming linear and nonlinear SVMs. In linear programming SVMs, in order to improve the speed of the training time, the bound of the VC dimension is loosened properly. Simulation results for both artificial and real data show that the generalization performance of our method is a good approximation of SVMs and the computation complex is largely reduced by our method. 相似文献
19.
Francesco Orabona Author Vitae Claudio Castellini Author Vitae Giulio Sandini Author Vitae 《Pattern recognition》2010,43(4):1402-1412
Support vector machines (SVMs) are one of the most successful algorithms for classification. However, due to their space and time requirements, they are not suitable for on-line learning, that is, when presented with an endless stream of training observations.In this paper we propose a new on-line algorithm, called on-line independent support vector machines (OISVMs), which approximately converges to the standard SVM solution each time new observations are added; the approximation is controlled via a user-defined parameter. The method employs a set of linearly independent observations and tries to project every new observation onto the set obtained so far, dramatically reducing time and space requirements at the price of a negligible loss in accuracy. As opposed to similar algorithms, the size of the solution obtained by OISVMs is always bounded, implying a bounded testing time. These statements are supported by extensive experiments on standard benchmark databases as well as on two real-world applications, namely place recognition by a mobile robot in an indoor environment and human grasping posture classification. 相似文献
20.
This paper proposes a new classifier called density-induced margin support vector machines (DMSVMs). DMSVMs belong to a family of SVM-like classifiers. Thus, DMSVMs inherit good properties from support vector machines (SVMs), e.g., unique and global solution, and sparse representation for the decision function. For a given data set, DMSVMs require to extract relative density degrees for all training data points. These density degrees can be taken as relative margins of corresponding training data points. Moreover, we propose a method for estimating relative density degrees by using the K nearest neighbor method. We also show the upper bound on the leave-out-one error of DMSVMs for a binary classification problem and prove it. Promising results are obtained on toy as well as real-world data sets. 相似文献