首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
剑麻纤维增强热塑性淀粉复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
为研究剑麻纤维增强的热塑性淀粉复合材料的制备工艺及热稳定性,以玉米淀粉为原料,先制得热塑性淀粉,再以剑麻纤维为骨架增强体制备剑麻纤维增强热塑性淀粉复合材料,通过正交试验优化制备工艺,DSC、TG/DTG、SEM分析其热稳定性及结构。正交试验表明,各因素对材料抗拉强度影响的主次顺序为纤维长度 >纤维用量 >模压成型温度 >填料用量;最佳工艺条件为纤维长度15mm、纤维用量35g、模压成型温度200℃、填料用量5g,此时材料的抗拉强度可达到4.45MPa。利用差示扫描量热分析和热重分析分别对热塑性淀粉及剑麻纤维复合材料的热稳定性进行了分析,结果表明,热塑处理提高了淀粉的熔融温度,有利于淀粉与纤维素羟基间的氢键结合,且热塑过程在一定程度上降低了淀粉的热稳定性;剑麻纤维复合材料的热降解过程主要发生在200~400℃温度区间。SEM分析显示最佳工艺条件下得到的复合材料具有较好的泡孔结构。  相似文献   

2.
《塑料》2016,(6)
以剑麻纤维(SF)和聚乳酸(PLA)为原料,通过注塑成型工艺制备了剑麻纤维增强聚乳酸可降解复合材料。研究了连续碱处理剑麻纤维(CASF)和未改性处理剑麻纤维(USF)在不同含量时对复合材料力学性能、吸水性及可降解性能的影响。结果表明:剑麻纤维的质量分数会显著影响复合材料的力学性能、吸水性和降解性能。相较于未改性处理剑麻纤维(USF),碱处理剑麻纤维(CASF)可以进一步提高复合材料的力学性能,降低复合材料的吸水率,延缓剑麻纤维增强可降解树脂基复合材料的降解速率,且酶降解法相较于土埋法降解能够显著加快复合材料的降解速率。当剑麻纤维含量为20%时,CASF/PLA复合材料的拉伸强度、弯曲强度和弯曲模量相较于纯PLA和USF/PLA分别提高了32.71%、10.08%;19.63%、12.11%;97.33%、12.40%;其冲击强度相较于纯PLA提高了71.19%。  相似文献   

3.
采用碱、高锰酸钾及热对剑麻纤维布进行了表面处理,并由真空辅助树脂传递模塑成型(VARTM)工艺制备了剑麻纤维布增强不饱和聚酯树脂复合材料。通过对复合材料的力学性能及吸水性的测试,研究了不同剑麻纤维布表面处理对其不饱和聚酯树脂复合材料性能的影响。结果表明:经过碱处理,复合材料的拉伸、弯曲,冲击强度提高最大,可分别提高26.5%,16.5%和22.6%,吸水率降低了47.5%。对剑麻纤维布进行表面处理可使复合材料的界面性能得到改善,力学性能提高,吸水性降低。  相似文献   

4.
以甘油为增塑剂,采用熔融共混法制备热塑性木薯淀粉/剑麻纤维(TPS/SF)复合材料,研究碱处理和3-氨丙基三乙氧基硅烷(KH550)两种不同表面处理方法处理剑麻纤维对TPS结构与性能的影响。结果表明,添加碱处理剑麻的TPS/SF复合材料塑化性能较好,更容易进行加工;在力学性能、回生行为、热性能和结构方面,添加KH550处理的剑麻纤维TPS/SF复合材料拉伸强度和弹性模量较高,能更好抑制TPS回生,且热稳定性能更好,结构更稳定、更疏水。  相似文献   

5.
采用真空干燥箱对剑麻纤维进行预处理,并与聚乳酸(PLA)复合制备了剑麻纤维含量为50%的全降解环保型复合材料。研究了真空条件下剑麻纤维热处理温度、热处理时间对剑麻纤维成分、结构和复合材料性能的影响,并通过红外光谱和扫描电镜分析其作用机理。结果表明:在真空条件下,热处理使剑麻结构发生变化,半纤维素降解,改善了界面结合能力,且适宜的热处理温度、热处理时间有利于复合材料力学性能的提高。  相似文献   

6.
房昆 《工程塑料应用》2012,40(4):100-103
介绍了剑麻纤维(SF)的结构特点、物理力学性能以及纤维改性处理方法,从纤维形态及增强基质出发综述了长、短SF及SF混杂纤维增强复合材料以及SF增强热塑性、热固性树脂和弹性体复合材料方面的研究与开发,指出了SF增强复合材料今后的研究方向。  相似文献   

7.
采用碱处理、硅烷偶联剂处理以及两者复合的处理方法对剑麻纤维进行表面改性,研究了不同处理方法对剑麻纤维的性能以及剑麻纤维/淀粉复合材料界面粘结性能的影响。通过傅立叶变换红外光谱仪、热重分析仪、扫描电子显微镜和万能试验机对不同处理的剑麻纤维进行表征,使用拔出实验测试剑麻/淀粉复合材料的界面粘结情况,并采用二参数威布尔模型计算拉伸强度和界面剪切强度。结果表明,所有处理方法都能提高剑麻纤维的热稳定性和界面剪切强度。与未处理纤维相比,碱处理后的剑麻纤维与淀粉的界面剪切强度最高,为2.011 MPa,提高了19%。  相似文献   

8.
提出了一种新的纤维表面处理方法———不完全化学处理法。以该方法制备的非连续碱处理剑麻纤维(DASF)作为增强纤维,通过开炼压制制备了DASF/聚乳酸(PLA)复合材料。对比了未处理剑麻纤维(SF)、连续碱处理剑麻纤维(CASF)以及DASF制得的PLA复合材料力学性能,并通过扫描电镜(SEM)、体视显微镜对试样进行观察分析。研究了DASF长度与直径的变化,以及非连续碱处理方法、DASF质量分数对复合材料结构和性能的影响。结果表明,DASF/PLA复合材料中,纤维的长度多分布在1.6~3.1 mm范围内,直径小于SF而大于CASF。相比于连续碱处理,非连续碱处理可以进一步提高复合材料力学性能。纤维质量分数会影响DASF/PLA复合材料的力学性能,当纤维质量分数为30%时,DASF/PLA复合材料的力学性能最优。  相似文献   

9.
蒸汽爆破预处理PLA/剑麻复合材料的性能研究   总被引:1,自引:0,他引:1  
对剑麻纤维(SF)进行蒸汽爆破预处理,并与可生物降解材料聚乳酸(PLA)经模压成型制备降解复合材料,研究了混炼温度、SF含量及蒸汽爆破预处理对复合材料力学性能的影响,并通过X射线光电子能谱(XPS)和扫描电子显微镜(SEM)分析了其作用机理.结果表明,蒸汽爆破预处理可提高SF纤维素的含量,增大纤维的比表面积,使复合材料...  相似文献   

10.
剑麻纤维/酚醛树脂复合材料研究   总被引:20,自引:5,他引:20  
本文采用碱处理、硅烷偶联剂处理、化学接枝和热处理等物理化学方法,对剑麻纤维进行改性。研究了改性后短剑麻纤维/酚醛树脂复合材料的弯曲性能、无缺口冲击强度和布氏硬度,借助扫描电子显微镜观察了复合材料的弯曲断口形貌,并研究了剑麻纤维的不同处理方法对复合材料耐水浸泡性的影响。结果表明:剑麻纤维经硅烷偶联剂处理后,能有效改善刚性的剑麻纤维与脆性的酚醛树脂基体之间的粘结,从而提高了复合材料的综合力学性能,剑麻  相似文献   

11.
采用碱处理、偶联剂处理、醋酸处理等方法,对剑麻柄进行处理,再与自行合成的脲醛树脂(UF)进行捏合、模压,制成剑麻纤维/脲醛树脂共混复合材料。研究了碱处理最佳工艺以及不同处理方法对复合材料的力学性能、耐磨性、耐水性、电性能和热性能的影响,并与木粉/UF复合材料的性能进行了对比。结果表明:剑麻柄的处理方法对复合材料的电性能、热性能和吸水性影响不大;采用乙酰化处理剑麻柄时,复合材料强度较高。耐磨性好,此时剑麻纤维/UF复合材料的各项性能接近木粉/UF复合材料的性能  相似文献   

12.
In recent years, sisal fibres have become a promising reinforcement for composites because of their low cost, low density, high specific strength, high specific modulus, easy availability and renewability. However, the poor adhesion between the hydrophilic sisal fibre and the hydrophobic thermoplastic matrices has adversely affected the widespread use of these composites. In this study, argon and air-plasma treatments have been used to modify the fibre surfaces under suitable treatment parameters to improve the compatibility between sisal fibres and polypropylene (PP). Sisal fibres and PP fibres are blended together to form a random mat which is then vacuum hot-pressed into a preimpregnated composite sheet. Mechanical properties such as tensile strength and modulus, flexural strength and modulus, and the storage modulus of the composite sheets improve after the incorporation of plasma-treated fibres. Furthermore, scanning electron microscopy analyses reveal the increased surface roughness of sisal fibre. Surface characterisation has been performed by X-ray photoelectron spectroscopy, showing an increase in oxygen/carbon ratio of sisal fibres after plasma treatment.  相似文献   

13.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
The aim of the present study is to investigate and compare the mechanical properties of raw jute and sisal fiber reinforced epoxy composites with sodium hydroxide treated jute and sisal fiber reinforced epoxy composites. This is followed by comparisons of the sodium hydroxide treated jute and sisal fiber reinforced composites. The jute and sisal fibers were treated with 20% sodium hydroxide for 2 h and then incorporated into the epoxy matrix by a molding technique to form the composites. Similar techniques have been adopted for the fabrication of raw jute and sisal fiber reinforced epoxy composites. The raw jute and sisal fiber reinforced epoxy composites and the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites were characterized by FTIR. The mechanical properties (tensile and flexural strength), water absorption and morphological changes were investigated for the composite samples. It was found that the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites exhibited better mechanical properties than the raw jute and raw sisal fiber reinforced composites. When comparing the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites, the sodium hydroxide treated jute fiber reinforced composites exhibited better mechanical properties than the latter.  相似文献   

15.
Natural fibre-reinforced polymer matrix composites are gaining increased attention among the researchers due to their low density, biodegradability, abundance, good mechanical properties, etc. Significant amount of research works can be found on the material characterisation of natural fibres like hemp, flax, sisal, kenaf, coir and jute and their composites based on the polymer matrices. Natural fibres are hydrophilic in nature and exhibit poor interfacial adhesion between fibre and matrix. Modification of the fibre surface by chemical methods, such as alkalisation, benzoylation and acetylation, has been used by researchers to improve the above-mentioned shortcomings. This review paper focuses on the effect of alkali treatment on the material properties of various natural fibres and their composites along with their water absorption behaviour.  相似文献   

16.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

17.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号