首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced glycation end products (AGE) in tissues are important for the central pathological features of diabetic complication. Although AGE bind to several cell-surface sites, resulting in altered cellular functions, receptor for AGE (RAGE) appears to have a central role. We examined AGE accumulation and RAGE expression in the aorta and heart of rats with streptozotocin (STZ)-induced diabetes, 0, 4, 8, 12, 16 and 24 weeks after STZ administration. Early atherosclerotic findings in the intima and medial thinning were observed in the aorta after 16 weeks of STZ-Induced diabetes. Immunohistochemistry and microscope spectrophotometry showed that AGE deposition increased significantly in the aorta and vessels of the myocardium, depending on the period of hyperglycaemia. RAGE was expressed in the endothelial cells and vascular smooth muscle cells of all animals. The number of smooth muscle cells with RAGE immunoreactivity increased until 12 weeks after STZ injection, and then decreased in rats with diabetes between 16 and 24 weeks. On the other hand, total RAGE mRNA levels in the aorta and heart continued to increase with the duration of hyperglycaemia. Furthermore, AGE-BSA induced RAGE mRNA expression of human umbilical vein endothelial cells in vitro. Taken together, the AGE accumulation might initiate diabetic macroangiopathy through RAGE, and the increase of RAGE expression by endothelial cells could be a reason that diabetes mellitus accelerates atherosclerosis rapidly.  相似文献   

2.
PURPOSE: Advanced glycation end products (AGEs) form irreversible cross-links with many macromolecules and have been shown to accumulate in tissues at an accelerated rate in diabetes. In the present study, AGE formation in vitreous was examined in patients of various ages and in patients with diabetes. Ex vivo investigations were performed on bovine vitreous incubated in glucose to determine AGE formation and cross-linking of vitreous collagen. METHODS: By means of an AGE-specific enzyme-linked immunosorbent assay (ELISA), AGE formation was investigated in vitreous samples obtained after pars plana vitrectomy in patients with and without diabetes. In addition, vitreous AGEs were investigated in bovine vitreous collagen after incubation in high glucose, high glucose with aminoguanidine, or normal saline for as long as 8 weeks. AGEs and AGE cross-linking was subsequently determined by quantitative and qualitative assays. RESULTS: There was a significant correlation between AGEs and increasing age in patients without diabetes (r = 0.74). Furthermore, a comparison between age-matched diabetic and nondiabetic vitreous showed a significantly higher level of AGEs in the patients with diabetes (P < 0.005). Collagen purified from bovine vitreous incubated in 0.5 M glucose showed an increase in AGE formation when observed in dot blot analysis, immunogold labeling, and AGE ELISA. Furthermore, there was increased cross-linking of collagen in the glucose-incubated vitreous, when observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein separation. This cross-linking was effectively inhibited by coincubation with 10 mM aminoguanidine. CONCLUSIONS: This study suggests that AGEs may form in vitreous with increasing age. This process seems to be accelerated in the presence of diabetes and as a consequence of exposure to high glucose. Advanced glycation and AGE cross-linking of the vitreous collagen network may help to explain the vitreous abnormalities characteristic of diabetes.  相似文献   

3.
The incidence of root caries has been found to increase as the population ages and as edentulism becomes less prevalent due to improved dental awareness and care, and as exposure of roots due to gingival recession has also increased in the elderly. The mechanism of root caries is thought to be mediated by both bacterial and mammalian proteases produced by plaque and the periodontal tissues, respectively. In the current study, a rat model of periodontal disease was used in which gnotobiotic rats were infected intra-orally with a periodontal pathogen (P. gingivalis). Infecting the rats with P. gingivalis increased the collagenase activity in the gingival tissue in association with severe alveolar bone loss. Treating P. gingivalis-infected rats with doxycycline or CMT-1 prevented the destruction of the periodontium by MMPs, thus preventing exposure of roots to subgingival bacterial plaque and host tissue collagenases and the subsequent development of root caries. In addition, a low-dose doxycycline (LDD, 20 mg bid, non-antimicrobial dose) for 3 months was used in humans predisposed to increased root caries as the result of heavy use of smokeless (chewing) tobacco, causing gingival recession, subgingival plaque accumulation with Gram-negative bacteria, increased gingival crevicular fluid flow (GCF), and elevated GCF collagenase. Daily administration of LDD in smokeless tobacco patients reduced the GCF collagenase and prevented the further development of root caries.  相似文献   

4.
BACKGROUND: Advanced glycation end products (AGEs), formed by non-enzymatic glycation and oxidation (glycoxidation) reactions, have been implicated in the pathogenesis of several diseases, including normoglycemic uremia. AGE research in uremia has focused on the accumulation of carbohydrate-derived adducts generated by the Maillard reaction. Recent studies, however, have demonstrated that one AGE, the glycoxidation product carboxymethyllysine (CML), could be derived not only from carbohydrates but also from oxidation of polyunsaturated fatty acids in vitro, raising the possibility that both carbohydrate and lipid autoxidation might be increased in uremia. METHODS: To address this hypothesis, we applied gas chromatography-mass spectrometry and high performance liquid chromatography to measure protein adducts formed in uremic plasma by reactions between carbonyl compounds and protein amino groups: pentosidine derived from carbohydrate-derived carbonyls, malondialdehyde (MDA)-lysine derived from lipid-derived carbonyls, and CML originating possibly from both sources. RESULTS: All three adducts were elevated in uremic plasma. Plasma CML levels were mainly (>95%) albumin bound. Their levels were not correlated with fructoselysine levels and were similar in diabetic and non-diabetic patients on hemodialysis, indicating that their increase was not driven by glucose. Pentosidine and MDA-lysine were also increased in plasma to the same extent in diabetic and non-diabetic hemodialysis patients. Statistical analysis indicated that plasma levels of CML correlated weakly (P < 0.05) with those of pentosidine and MDA-lysine, but that pentosidine and MDA-lysine varied independently (P > 0.5). CONCLUSIONS: These data suggest that the increased levels of AGEs in blood, and probably in tissues, reported in uremia implicate a broad derangement in non-enzymatic biochemistry involving alterations in autoxidation of both carbohydrates and lipids.  相似文献   

5.
Advanced glycation end products (AGEs), the final products of nonenzymatic glycation and oxidation of proteins, are found in the plasma and accumulate in the tissues during aging and at an accelerated rate in diabetes. A novel integral membrane protein, termed receptor for AGE (RAGE), forms a central part of the cell surface binding site for AGEs. Using monospecific, polyclonal antibody raised to human recombinant and bovine RAGE, immunostaining of bovine tissues showed RAGE in the vasculature, endothelium, and smooth muscle cells and in mononuclear cells in the tissues. Consistent with these data, RAGE antigen and mRNA were identified in cultured bovine endothelium, vascular smooth muscle, and monocyte-derived macrophages. RAGE antigen was also visualized in bovine cardiac myocytes as well as in cultures of neonatal rat cardiac myocytes and in neural tissue where motor neurons, peripheral nerves, and a population of cortical neurons were positive. In situ hybridization confirmed the presence of RAGE mRNA in the tissues, and studies with rat PC12 pheochromocytes indicated that they provide a neuronal-related cell culture model for examining RAGE expression. Pathological studies of human atherosclerotic plaques showed infiltration of RAGE-expressing cells in the expanded intima. These results indicate that RAGE is present in multiple tissues and suggest the potential relevance of AGE-RAGE interactions for modulating properties of the vasculature as well as neural and cardiac function, prominent areas of involvement in diabetes and in the normal aging process.  相似文献   

6.
7.
Advanced glycation end-products (AGEs) are irreversible compounds which, by abnormally accumulating over proteins as a consequence of diabetic hyperglycaemia, can damage tissues and thus contribute to the pathogenesis of diabetic complications. This study was performed to evaluate whether restoration of euglycaemia by islet transplantation modifies AGE accumulation in central and peripheral nervous tissue proteins and, as a comparison, in proteins from a non-nervous tissue. Two groups of streptozotocin diabetic inbred Lewis rats with 4 (T1) or 8 (T2) months disease duration were grafted into the liver via the portal vein with 1200-1500 islets freshly isolated from normal Lewis rats. Transplanted rats, age-matched control and diabetic rats studied in parallel, were followed for a further 4-month period. At study conclusion, glycaemia, glycated haemoglobin and body weight were measured in all animals, and an oral glucose tolerance test (OGTT) performed in transplanted rats. AGE levels in cerebral cortex, spinal cord, sciatic nerve proteins and tail tendon collagen were measured by enzyme-linked immunosorbent assay (ELISA). Transplanted animal OGTTs were within normal limits, as were glycaemia and glycated haemoglobin. Diabetic animal AGEs were significantly higher than those of control animals. Protein AGE values were reduced in many transplanted animals compared to diabetic animals, reaching statistical significance in spinal cord (P < 0.05), sciatic nerve (P < 0.02) and tail tendon collagen (P < 0.05) of T1 animals. Thus, return to euglycaemia following islet transplantation after 4 months of diabetes with poor metabolic control reduces AGE accumulation rate in the protein fractions of the mixed and purely peripheral nervous tissues (spinal cord and sciatic nerve, respectively). However, after a double duration of bad metabolic control, a statistically significant AGE reduction has not been achieved in any of the tissues, suggesting the importance of an early therapeutic intervention to prevent the possibly pathological accumulation of AGEs in nervous and other proteins.  相似文献   

8.
Late rearrangement products that accumulate by glycation of proteins, known as advanced glycation end products (AGEs), have been implicated in the pathogenesis of complications related to diabetes. Circulating AGEs, especially in the form of a small peptide (AGE-peptide) of less than 10 kd, increase in the blood of diabetic patients with end-stage renal disease (ESRD). The aim of the study was to evaluate AGE-peptide levels by measuring AGE-specific fluorescence (excitation at 370 nm and emission at 440 nm) and to examine the relationship between AGE-peptide and diabetic nephropathy. AGE-specific fluorescence in serum and urine were examined in diabetic subjects with various levels of renal complications of varying severity: normoalbuminuria (N), microalbuminuria (Mi), macroalbuminuria (Ma), chronic renal failure (C), and hemodialysis (HD). We also assessed correlations among the AGE-peptide level and age, duration of diabetes, hemoglobin A1c (HbA1c), serum creatinine, and creatinine clearance. Serum and urine AGE-peptide levels in C and HD were significantly higher than in N, Mi, and Ma. Serum AGE-peptide levels were significantly correlated with serum creatinine (r=.866, P < .0001) and creatinine clearance (r=-.720, P < .0001) but not with duration of diabetes or age. There was a significant correlation between AGE-peptide levels measured by enzyme-linked immunosorbent assay (ELISA) and levels determined from the specific fluorescence intensity (r=.688, P < .0001). These findings suggest that renal function may play a greater role in the accumulation of AGEs than persistent hyperglycemia in diabetic patients. Measurement of AGE-specific fluorescence (ie, AGE-peptide) may serve as a simple and useful test to assess circulating AGE levels and monitor AGE excretion.  相似文献   

9.
Toxic effects of hyperglycemia-induced advanced glycosylated end products (AGEs) may explain some vasculopathic complications of diabetes. Aminoguanidine, a known inhibitor of AGE formation, was administered by gavage to Sprague-Dawley streptozotocin-induced diabetic rats made azotemic by surgical reduction of renal mass. All rats became hyperglycemic. Renal ablation caused renal insufficiency, as evidenced by markedly reduced endogenous creatinine clearances at days 7 and 14. Aminoguanidine-treated rats had significantly (P < 0.04) superior survival to that of untreated azotemic diabetic rats. We infer from the extended life in a rat model of uremia in diabetic nephropathy that aminoguanidine may prove beneficial in human diabetes.  相似文献   

10.
Diabetic uremic sera contain excessive amounts of reactive advanced glycation endproducts (AGEs), which accelerate the vasculopathy of diabetes and end-stage renal disease. To capture in vivo-derived toxic AGEs, high affinity AGE-binding protein lysozyme (LZ) was linked to a Sepharose 4B matrix. Initial studies showed that > 80% of 125I-AGE-BSA was retained by the LZ matrix, compared with < 10% retained by a control matrix. More than 60% of AGE-lysine was captured by the LZ matrix, and the LZ-bound fraction retained immunoreactivity and cross-linking activity, but had little intrinsic fluorescence (370/440 nm). After passage through the LZ matrix, AGE levels in diabetic sera (0.37+/-0.04 U/mg) were significantly reduced to a level (0.09+/-0.01 U/mg; n = 10; P < 0. 0001) comparable with the level of normal human serum, whereas total protein absorption was < 3%. The AGE-enriched serum fraction exhibited cross-linking activity, which was completely prevented by aminoguanidine. Among numerous LZ-bound proteins in diabetic uremic sera, three major proteins "susceptible" to AGE modification were identified: the immunoglobulin G light chain, apolipoprotein J (clusterin/SP-40,40), and the complement 3b beta chain. These findings indicate that the LZ-linked AGE affinity column may serve as an efficient method for the depletion of toxic AGEs from sera, including specific AGE-modified proteins that may be linked to altered immunity, lipoprotein metabolism, and accelerated vasculopathy in renal failure patients with or without diabetes.  相似文献   

11.
The present study evaluated the prevalence of Porphyromonas gingivalis and the correlation between the bacterial culture method and the detection of immunoglobulin A (IgA) specific to the P. gingivalis fimbrial antigen in gingival crevicular fluid (GCF). P. gingivalis was isolated from 78.3% of subgingival plaque samples obtained from active sites and 34.7% of those from inactive sites of periodontal patients. P. gingivalis was isolated from only 4.7% of healthy subjects (control group). Immunoglobulins specific to the P. gingivalis fimbrial antigen were detected by enzyme-linked immunosorbent assay (ELISA). The overall agreement between the results of the P. gingivalis culture method and the results of specific IgA detection in periodontal patients was 71.7% for active sites and 58.7% for inactive sites. IgA specific to P. gingivalis was absent in GCF from all of the sites of healthy subjects. The results suggest that P. gingivalis is associated with the local production of specific IgA. The detection of IgA antibodies specific to P. gingivalis in GCF by ELISA may be used as a predictive parameter to reveal the early phase of the activation of recurrent periodontal infections.  相似文献   

12.
Periodontitis is a common, progressive disease that eventually affects the majority of the population. The local destruction of periodontitis is believed to result from a bacterial infection of the gingival sulcus, and several clinical studies have provided evidence to implicate Porphyromonas gingivalis. If P. gingivalis is a periodontal pathogen, it would be expected to be present in most subjects with disease and rarely detected in subjects with good periodontal health. However, in most previous studies, P. gingivalis has not been detected in the majority of subjects with disease, and age-matched, periodontally healthy controls were not included for comparison. The purpose of the study reported here was to compare the prevalence of P. gingivalis in a group with periodontitis to that of a group that is periodontally healthy. A comprehensive sampling strategy and a sensitive PCR assay were used to maximize the likelihood of detection. The target sequence for P. gingivalis-specific amplification was the transcribed spacer region within the ribosomal operon. P. gingivalis was detected in only 25% (46 of 181) of the healthy subjects but was detected in 79% (103 of 130) of the periodontitis group (P < 0.0001). The odds ratio for being infected with P. gingivalis was 11.2 times greater in the periodontitis group than in the healthy group (95% confidence interval, 6.5 to 19.2). These data implicate P. gingivalis in the pathogenesis of periodontitis and suggest that P. gingivalis may not be a normal inhabitant of a periodontally healthy dentition.  相似文献   

13.
RATIONALE: Advanced glycation endproducts (AGEs) contribute to the pathogenesis of vascular complications in diabetes, aging and end-stage renal disease (ESRD). Immune abnormalities in patients with chronic renal failure and those treated by dialysis contribute to high rates of morbidity and mortality. We therefore sought a relationship between a circulating marker of immune dysfunction and plasma levels of the AGE pentosidine. METHOD: We studied non-diabetic patients with mild to advanced renal failure (n = 60), and with ESRD treated by hemodialysis (HD) (n = 44) and peritoneal dialysis (PD) (n = 19). The plasma protein content of the well characterized AGE, pentosidine was measured using HPLC. In the same samples the monocyte activation product neopterin was measured by RIA. RESULTS: Plasma levels of pentosidine and neopterin increased in parallel with the progression of renal failure. Pentosidine and neopterin were highly correlated in all patients even after adjustment for Ccr. This correlation was also present in patients with ESRD. CONCLUSION: These data suggest that the AGE pentosidine is associated with monocyte activation in renal failure, an interaction which may contribute to accelerated rates of complication and death by as yet unknown mechanisms.  相似文献   

14.
To address potential mechanisms for oxidative modification of lipids in vivo, we investigated the possibility that phospholipids react directly with glucose to form advanced glycosylation end products (AGEs) that then initiate lipid oxidation. Phospholipid-linked AGEs formed readily in vitro, mimicking the absorbance, fluorescence, and immunochemical properties of AGEs that result from advanced glycosylation of proteins. Oxidation of unsaturated fatty acid residues, as assessed by reactive aldehyde formation, occurred at a rate that paralleled the rate of lipid advanced glycosylation. Aminoguanidine, an agent that prevents protein advanced glycosylation, inhibited both lipid advanced glycosylation and oxidative modification. Incubation of low density lipoprotein (LDL) with glucose produced AGE moieties that were attached to both the lipid and the apoprotein components. Oxidized LDL formed concomitantly with AGE-modified LDL. Of significance, AGE ELISA analysis of LDL specimens isolated from diabetic individuals revealed increased levels of both apoprotein- and lipid-linked AGEs when compared to specimens obtained from normal, nondiabetic controls. Circulating levels of oxidized LDL were elevated in diabetic patients and correlated significantly with lipid AGE levels. These data support the concept that AGE oxidation plays an important and perhaps primary role in initiating lipid oxidation in vivo.  相似文献   

15.
16.
The glomerular basement membrane (GBM) is damaged in diabetes through complex mechanisms that are not fully understood. Prominent among them is nonenzymatic protein glycation leading to the formation of so-called advanced glycation end products (AGEs). We examined the effects of in vitro glycation of intact collagen type IV in bovine lens capsule (LBM) and kidney glomerular (GBM) basement membranes on their susceptibility to matrix metalloproteinases, using stromelysin 1 (MMP-3) and gelatinase B (MMP-9). Sites of cleavage of unmodified LBM collagen were located in the triple helical region. In vitro glycation by glucose severely inhibited the release of soluble collagen cleavage peptides by MMP-3 and MMP-9. The distribution of AGEs within the three domains of collagen IV (7S, triple helical, and noncollagenous NC1) were compared for LBM glycation using AGE fluorescence, pentosidine quantitation, and immunoreactivity towards anti-AGE antibodies that recognize the AGE carboxymethyllysine (CML). Marked asymmetry was observed, with the flexible triple helical domain having the most pentosidine and fluorescent AGEs but the least CML. The in vivo relevance of these findings is supported by preliminary studies of AGE distribution in renal basement membrane (RBM) collagen IV domains from human kidneys of two insulin-dependent diabetics and one normal subject. Pentosidine and fluorescent AGE distributions of diabetic RBM were similar to LBM, but the CML AGE in diabetic kidney was less in the triple helical domain than in NC1. Our results support the hypothesis that nonenzymatic glycation of collagen IV contributes to the thickening of basement membranes, a hallmark of diabetic nephropathy.  相似文献   

17.
Little is known regarding the molecules expressed by gingival epithelial cells that are involved in initiating and maintaining inflammation following the interaction with periodontal pathogens. Thus, we investigated the effect of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis infection on the expression of neutrophil chemoattractant interleukin 8 (IL-8) and the adhesion molecule intercellular adhesion molecule-1 by gingival epithelial cells. The data revealed that both IL-8 and intercellular adhesion molecule-1 expression increased after infection with A. actinomycetemcomitans (IL-8: 2- to 7-fold; intercellular adhesion molecule-1: 2.5- to 3.7-fold). IL-8 secretion reached a maximal level 6 h after the infection and the expression subsequently decreased to basal level. The increased cell surface intercellular adhesion molecule-1 expression started at 4 h after infection and reached a maximal level 14 h after the infection. In contrast, the expression of both molecules rapidly decreased 2 h after challenge with P. gingivalis. This opposite influence of A. actinomycetemcomitans and P. gingivalis infection on the expression of IL-8 and intercellular adhesion molecule-1 by gingival epithelial cells suggests that A. actinomycetemcomitans infection may initiate the recruitment of neutrophils, whereas the P. gingivalis infection may retard this process and therefore demonstrate a distinct perspective of virulence.  相似文献   

18.
The role of intracellular calcium in the modifications of naloxone-precipitated withdrawal jumping in morphine-dependent mice by diabetes was examined. Naloxone-precipitated withdrawal jumping was significantly less in morphine-dependent diabetic mice than in morphine-dependent non-diabetic mice. Intracerebroventricular (i.c.v. ) pretreatment with ryanodine attenuated naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic mice. However, naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice was not affected by i.c.v. pretreatment with ryanodine. Moreover, i.c.v. pretreatment with thapsigargin, a Ca2+-ATPase inhibitor, enhanced naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice. The noradrenaline (NA) turnover in the frontal cortex in morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice, was significantly increased by naloxone injection. Naloxone-induced enhancement of NA turnover in morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice, was blocked by i.c.v. pretreatment with ryanodine. In contrast to ryanodine, thapsigargin enhanced naloxone-induced enhancement of NA turnover in morphine-dependent non-diabetic mice. These results suggest that increased intracellular calcium augmented naloxone-precipitated withdrawal jumping and the turnover rate of NA in the frontal cortex in morphine-dependent non-diabetic mice. Furthermore, it seems likely that the attenuation of naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice may be due, in part, to the dysfunction of intracellular calcium store.  相似文献   

19.
Advanced glycosylation end products (AGEs) accumulate on long-lived extracellular matrix proteins and have been implicated in the micro- and macrovascular complications of diabetes mellitus. Within the arterial wall, AGE-modified proteins increase vascular permeability, inactivate nitric oxide activity, and induce the release of growth-promoting cytokines. Recently developed anti-AGE antibodies were used in an immunohistochemical analysis of coronary arteries obtained from type II diabetic and nondiabetic patients. High levels of AGE reactivity were observed within the atherosclerotic plaque present in vessels from selected patients with diabetes. Considered together with the pathological effects of AGEs on vascular wall homeostasis, these data support the role of advanced glycosylation in the rapidly progressive atherosclerosis associated with diabetes mellitus.  相似文献   

20.
Advanced glycation end products (AGEs) have been implicated in the chronic complications of diabetes mellitus and have been reported to play an important role in the pathogenesis of Alzheimer's disease. In this study, we examined the immunohistochemical localization of AGEs, amyloid beta protein (A beta), apolipoprotein E (ApoE), and tau protein in senile plaques, neurofibrillary tangles (NFTs), and cerebral amyloid angiopathy (CAA) in Alzheimer's disease and other neurodegenerative diseases (progressive supranuclear palsy, Pick's disease, and Guamanian amyotrophic lateral sclerosis/Parkinsonism-dementia complex). In most senile plaques (including diffuse plaques) and CAA from Alzheimer's brains, AGE and ApoE were observed together. However, approximately 5% of plaques were AGE positive but A beta negative, and the vessels without CAA often showed AGE immunoreactivity. In Alzheimer's disease, AGEs were mainly present in intracellular NFTs, whereas ApoE was mainly present in extracellular NFTs. Pick's bodies in Pick's disease and granulovacuolar degeneration in various neurodegenerative diseases were also AGE positive. In non-Alzheimer neurodegenerative diseases, senile plaques and NFTs showed similar findings to those in Alzheimer's disease. These results suggest that AGE may contribute to eventual neuronal dysfunction and death as an important factor in the progression of various neurodegenerative diseases, including Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号