首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The twinning of YBa2Cu3O7 (YBCO) thin films with c-axis orientation on (001) MgO, (001) SrTiO3, (012) LaAlO3, (110) NdGaO3 and (001) NdGaO3 substrates, prepared by laser ablation, has been examined using a combination of and θ/2θ scans at a four-circle diffractometer. On all substrates, except for (001) NdGaO3, the tetragonal to orthorhombal phase transition results in four different orientations of YBCO twins relating to the substrate. On (001) NdGaO3 only two different twin orientations, accompanied by a slight lattice monoclinization, has been observed.  相似文献   

2.
Chang Jung Kim   《Thin solid films》2004,450(2):261-264
Ferroelectric bismuth lanthanum titanate (Bi3.25La0.75Ti3O12; BLT) thin films were deposited on Pt/TiO2/SiO2/Si substrate by chemical solution deposition method. The films were crystallized in the temperature range of 600–700 °C. The spontaneous polarization (Ps) and the switching polarization (2Pr) of BLT film annealed at 700 °C for 30 min were 22.6 μC/cm2 and 29.1 μC/cm2, respectively. Moreover, the BLT capacitor did not show any significant reduction of hysteresis for 90 min at 300 °C in the forming gas atmosphere.  相似文献   

3.
Transparent glasses in the system (100−x)Li2B4O7x(SrO---Bi2O3---Nb2O5) (10≤x≤60) (in molar ratio) were fabricated by a conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via X-ray powder diffraction (XRD) and differential thermal analyses (DTA) respectively. Glass–ceramics embedded with strontium bismuth niobate, SrBi2Nb2O9 (SBN) nanocrystals were produced by heat-treating the as-quenched glasses at temperatures higher than 500 °C. Perovskite SBN phase formation through an intermediate fluorite phase in the glass matrix was confirmed by XRD and transmission electron microscopy (TEM). Infrared and Raman spectroscopic studies corroborate the observation of fluorite phase formation. The dielectric constant (r) and the loss factor (D) for the lithium borate, Li2B4O7 (LBO) glass comprising randomly oriented SBN nanocrystals were determined and compared with those predicted based on the various dielectric mixture rule formalism. The dielectric constant was found to increase with increasing SBN content in LBO glass matrix.  相似文献   

4.
Glasses of various compositions in the system (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (10  x  60, in molar ratio) were prepared by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as-quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X-ray powder diffraction studies. Glass composites comprising strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat-treated at 783 K/6 h) confirm the presence of rod shaped crystallites of SBVN embedded in Li2B4O7 glass matrix. The optical transmission spectra of these glasses and glass nanocrystal composites of various compositions were recorded in the wavelength range 190–900 nm. Various optical parameters such as optical band gap (Eopt), Urbach energy (ΔE), refractive index (n), optical dielectric constant and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied.  相似文献   

5.
We report on the properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 solid solution thin films for ferroelectric non-volatile memory applications. The solid solution thin films fabricated by modified metalorganic solution deposition technique showed much improved properties compared to SrBi2Ta2O9. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 600°C and grain size was found to be considerably increased for the solid solution compositions. The film properties were found to be strongly dependent on the composition and annealing temperatures. The measured dielectric constant of the solid solution thin films was in the range 180–225 for films with 10–50% of Bi3TaTiO9 content in the solid solution. Ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films were significantly improved compared to SrBi2Ta2O9. For example, the observed remanent polarization (2Pr) and coercive field (Ec) values for films with 0.7SrBi2Ta2O9–0.3Bi3TaTiO9 composition, annealed at 650°C, were 12.4 μC/cm2 and 80 kV/cm, respectively. The solid solution thin films showed less than 5% decay of the polarization charge after 1010 switching cycles and good memory retention characteristics after about 106 s of memory retention. The improved microstructural and ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films compared to SrBi2Ta2O9, especially at lower annealing temperatures, suggest their suitability for high density FRAM applications.  相似文献   

6.
Ceramic composites of Ni0.8Co0.1Cu0.1Fe2O4 and lead–zirconate–titanate (PZT) were prepared using conventional solid state reaction method. The presence of constituent phases in composites was confirmed by X-ray diffraction (XRD). The variation of dielectric constant with frequency (100 Hz–1 MHz) and temperature has been studied. The variation of loss tangent (tan δ) with temperature (at frequency 1 kHz) has also been studied. The magnetoelectric (ME) output was measured as a function of dc magnetic field. The maximum value of ME output (625 mV/cm) was observed for 25% ferrite + 75% ferroelectric phase. The maximum ME response can be explained in terms of the content of ferrite, permittivity of dielectric material and the intensity of magnetic field. The ME response of these composites was observed to be linear within low dc magnetic field. These composites may form the basis for the development of magnetic sensors and transducers for use in solid state microelectronics and microwave devices.  相似文献   

7.
A series of glasses in the xPb3O4–(1−x)P2O5 (red lead phosphate) (RLP) system with ‘x' varying from 0.075 to 0.4 were prepared by the single-step melt quenching process from Pb3O4 and NH4H2PO4. The optical absorption spectra of these glasses have been recorded in the ultraviolet region from 200 to 400 nm and the fundamental absorption edges have been identified. The optical band gap Eopt values have been determined for all the glasses using the known theories. The (Eopt) values vary from 4.90 to 3.21 eV the highest being 4.57 eV, corresponding to the most stable glass of x=0.225. The absorption edge is attributed to the indirect transitions and the origin of the Urbach energy ΔE is suggested to be thermal vibrations. These glasses promise as potential candidates for application in optical technology compared to simple xPbO–(1−x)P2O5 (lead phosphate) (LP) glasses.  相似文献   

8.
We report on the experimental results of frequency dependent a.c. conductivity and dielectric constant of SrTiO3 doped 90V2O5–10Bi2O3 semiconducting oxide glasses for wide ranges of frequency (500–104 Hz) and temperature (80–400 K). These glasses show very large dielectric constants (102–104) compared with that of the pure base glass (≈102) without SrTiO3 and exhibit Debye-type dielectric relaxation behavior. The increase in dielectric constant is considered to be due to the formation of microcrystals of SrTiO3 and TiO2 in the glass matrix. These glasses are n-type semiconductors as observed from the measurements of the thermoelectric power. Unlike many vanadate glasses, Long's overlapping large polaron tunnelling (OLPT) model is found to be most appropriate for fitting the experimental conductivity data, while for the undoped V2O5–Bi2O3 glasses, correlated barrier hopping conduction mechanism is valid. This is due to the change of glass network structure caused by doping base glass with SrTiO3. The power law behavior (σac=A(ωs) with s<1) is, however, followed by both the doped and undoped glassy systems. The model parameters calculated are reasonable and consistent with the change of concentrations (x).  相似文献   

9.
New materials for a transparent conducting oxide film are demonstrated. Highly transparent Zn2In2O5 films with a resistivity of 3.9 × 10−4 Ω cm were prepared on substrates at room temperature using a pseudobinary compound powder target composed of ZnO (50 mol.%) and In2O3 (50 mol.%) by r.f. magnetron sputtering. MgIn2O4---Zn2In2O5 films were prepared using MgIn2O4 targets with a ZnO content of 0–100 wt.%. The resistivity of the deposited films gradually decreased from 2 × 10−3 to 3.9 × 10−4 Ω cm as the Zn/(Mg + Zn) atomic ratio introduced into the films was increased. The greatest transparency was obtained in a MgIn2O4 film. The optical absorption edge of the films decreased as the Zn/(Mg + Zn) atomic ratio was increased, corresponding to the bandgap energy of their materials. It was found that the resistance of the undoped Zn2In2O5 films was more stable than either the undoped MgIn2O4, ZnO or In2O3 films in oxidizing environments at high temperatures.  相似文献   

10.
Amorphous Fe2O3 nanoparticles of about 3–5 nm in size have been synthesized by microwave irradiation heating of an aqueous solution, containing ferric chloride, polyethylene glycol-2000 and urea. The Fe2O3 nanoparticles were characterized by the techniques of TEM, XRD, DSC, TGA and magnetization measurements.  相似文献   

11.
Tantalum oxide films have been deposited by 355 nm pulsed laser ablation of metallic Ta target in O3/O2 ambient. The structure and the composition of as-deposited and annealed films were examined by X-ray diffraction and Fourier transform infrared spectroscopy. The measurements of the current–voltage and capacitance–voltage characteristics of the Al/Ta2O5/Si capacitors were performed to reveal the electrical properties of the Ta2O5 films. The effects of annealing temperature on the characteristics of thin films have been studied. The results suggest that the films annealed above 700°C have the structure of orthorhombic β-Ta2O5, thc annealing treatment at high temperature decreases the bulk trap charge, the border trap, and the interface trap densities of as-deposited films, and improves significantly the dielectric and electrical properties of Ta2O5 film.  相似文献   

12.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

13.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

14.
This paper reports the influence of In2O3 film structure on gas-sensing characteristics measured in steady state and transient modes. Films were deposited by spray pyrolysis from InCl3–water solutions. Correlation between gas-sensing parameters and structural parameters such as film thickness (20–400 nm), grain size (10–70 nm), refractive index and film texture (I(400)/I(222)) were established. It was shown that grain size and porosity are the parameters of In2O3 films that best control gas response to ozone. In the detection of reducing gases, the influence of film structure is less important. Decreases in film thickness, grain size and degree of texture are the best way to decrease time constants of the gas response of In2O3-based gas sensors.  相似文献   

15.
Bi2O3·B2O3 glasses doped with rare-earth oxides (RE2O3) (RE3+ = La3+, Pr3+, Sm3+, Gd3+, Er3+ and Yb3+) were prepared by the melting–quenching method. The relationships between composition and properties were demonstrated by IR, DSC, XRD and SEM analysis. The results show that the network structure resembles that of undoped Bi2O3·B2O3 glass, composing of [BO3], [BO4] and [BiO6] units. RE2O3 stabilizes the glass structure as a modifier. Transition temperature (Tg) increases linearly with cationic field strength (CFS) of RE3+. La2O3, Pr2O3, Sm2O3 and Gd2O3 are benefit to promote the formation of BiBO3 crystal. When Er2O3 and Yb2O3 are introduced, respectively, the main crystal phase changes to Bi6B10O24. Transparent surface crystallized samples are obtained by reheating at 460–540 °C for 5 h. In this case, needle like BiBO3 crystal or rare-earth-doped BiBO3 crystal (PrxBi1−xBO3 and GdxBi1−xBO3) are observed, which is promising for non-linear optical application.  相似文献   

16.
Z.H. Zhu  M.J. Sha  M.K. Lei   《Thin solid films》2008,516(15):5075-5078
1 mol%Er3+–10 mol%Yb3+ codoped Al2O3 thin films have been prepared on thermally oxidized SiO2/Si(110) substrates by a dip-coating process in the non-aqueous sol–gel method from the hydrolysis of aluminum isopropoxide [Al(OC3H7)3] under isopropanol environment. Addition of N,N-dimethylformamide (DMF) as a drying control chemical additive (DCCA) into the sol suppresses formation of the cracks in the Er3+–Yb3+ codoped Al2O3 thin films when the rare-earth ion is doped with a high doping concentration. Homogeneous, smooth and crack-free Er3+–Yb3+ codoped Al2O3 thin films form at the conditions by a molar ratio of 1:1 for DMF:Al(OC3H7)3. A strong photoluminescence spectrum with a broadband extending from 1.400 to 1.700 µm centered at 1.533 µm is obtained for the Er3+–Yb3+ codoped Al2O3 thin films, which is unrelated to the addition of DMF. Controllable formation of the Er3+–Yb3+ codoped Al2O3 thin films may be explained by the fact that the DMF assisted the deprotonation process of Al–OH at the surfaces of gel particles, resulting in enhancement of the degree of polymerization of sols and improvement of the mechanical properties of gel thin films.  相似文献   

17.
A strengthening mechanism merely arising from internal (residual) microstresses due to thermal expansion mismatch is proposed for explaining the high experimental strength data measured in Al2O3/SiC nanocomposites. Upon cooling, transgranular SiC particles undergo lower shrinkage as compared to the surrounding matrix and provide a hydrostatic “expansion” effect in the core of each Al2O3 grain. Such a grain expansion tightens the internal Al2O3 grain boundaries, thus shielding both weakly bonded and unbonded (cracked) grain boundaries. It is shown that the shielding effect by intragranular SiC particles is more pronounced than the grain-boundary opening effect eventually associated with thermal expansion anisotropy of the Al2O3 grains, even in the “worst” Al2O3-grain cluster configuration. Therefore, an improvement of the material strength can be found. However, a large stress intensification at the grain boundary is found when intergranular SiC particles are present, which can produce a noticeable wedge-like opening effect and trigger grain-boundary fracture. The present model enables us to explain the experimental strength data reported for Al2O3/SiC nanocomposites and confirms that the high strength of these materials can be explained without invoking any toughening contribution by the SiC dispersion.  相似文献   

18.
MoSi2–Al2O3 nanocomposite was synthesized by mechanical alloying (MA) of MoO3, SiO2 and Al powder mixture. The structural evolution of the powders was studied by X-ray diffraction (XRD). Both β-MoSi2 and -MoSi2 were obtained after 3 h of milling. The spontaneous formation of β-MoSi2 during milling proceeded by a mechanically induced self propagating reaction (MSR), analogous to that of the self propagating high temperature synthesis (SHS). After 70 h of milling the β-phase transformed to -phase. The crystallite size of -MoSi2 and Al2O3 after milling for 100 h was 12 and 17 nm, respectively. Residual Mo and Si in the 3 and 70 h milled samples formed β-MoSi2 and Mo5Si3 during heating at 1000 °C, respectively.  相似文献   

19.
F. Iova  Ath. Trutia   《Optical Materials》2000,13(4):455-458
Diffuse-reflectance spectra of the NiO–Al2O3 systems in the 350–800 nm spectral domain are analysed. Two types of Ni2+complexes in γ-Al2O3 have been found at low concentrations (<5%): [Ni2+6O2−] and [Ni2+4O2−] with octahedral (Oh) and tetrahedral (Td) symmetries, respectively. Coexistence of these two complexes is discussed in connection with the sample preparation and their thermal treatment.  相似文献   

20.
The Al2O3 particles are introduced into the Al-4wt.%Mg melt by the “vortex” method. After being cast, Al2O3-(Al-4wt.%Mg) composites are remelted at 700, 750, 800 and 850°C for different residence times to investigate the formation of MgAl2O4 (spinel).

The results show that MgAl2O4 is the unique interface of the Al2O3-(Al---Mg) composites held at 700–850°C. Fine MgAl2O4 crystals grow on the surface of the Al2O3 particle but, as the holding temperature and the residence time increase, some spinels will form themselves into pyramidal shape. The MgAl2O4 grows not only at the matrix-particle interface but also on the surface of the composite specimens. The formation reactions of interfacial MgAl2O4 are as follows: Mg(1) + 2Al(1) + 2O2(g) = MgAl2O4(s)3Mg(1) + 4Al2O3(s) = 3MgAl2O4(s) + 2Al(1) Both of them are equally important.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号