首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic study of the effect of measurement perturbation on in situ monitoring of the composition of molecular beam epitaxially (MBE) grown Hg1−xCdxTe using spectroscopic ellipsometry was carried out. Of the five variables investigated, which included angle of incidence, wavelength of the light beam, modulator rotation, analyzer rotation, and modulator amplitude, the angle of incidence and the modulator rotation had the strongest effect on the in situ Hg1−xCdxTe composition monitoring process. A wobble-free sample manipulator was installed to reduce the impact of these two variables. With these improvements, the spectroscopic ellipsometer is now routinely used to monitor Hg 1−xCdxTe compositions during MBE growth of heterostructures and is a useful tool in diagnosing growth-related problems. Examples are included for both application areas, that include the control of the interface between Hg1−xCdxTe layers of different compositions, i.e. device engineering.  相似文献   

2.
The implementation of a feedback control system for maintaining a desired compositional value in Hg1−xCdxTe epilayers is reported. An 88-wavelength ellipsometer monitored the Cd content (x) of a Hg1−xCdxTe film during molecular beam epitaxy, and deviations from a pre-determined set-point were automatically corrected via adjustments in the CdTe effusion cell temperature. The accuracy of this system (Δx∼0.002) was confirmed by Fourier transform infrared transmission measurements made ex situ on the epilayers.  相似文献   

3.
As part of a systematic investigation of the effects of substrate surfaces on epitaxial growth, the transient behavior of Hg1−xCdxTe film growth on (111)B CdTe by chemical vapor transport (CVT) has been studied as a function of growth time under vertical stabilizing (hot end on top) and vertical destabilizing (hot end at bottom) ampoule orientations. The experim ental results show the morphological transition of the Hg1−xCdxTe deposition on (111)B CdTe at 545°C from three-dimensional islands to layers within about 0.5 and 0.75 h for the growth under vertical stabilizing and destabilizing conditions, respectively. The combined effects of small convective flow disturbances on the growth morphology and defect formation are measurable. The overall trends of the time dependent growth rates and compositions of the Hg1−xCdxTe epitaxial layers under stabilizing and destabilizing conditions are similar. The system atically higher growth rates of the Hg1−xCdxTe films by about 10% under vertical destabilizing conditions could be influenced by a small convective contribution to the mass transport. The combined results show that improved Hg1−xCdxTe epitaxial layers of low twin density on (111)B CdTe substrates can be obtained by CVT under vertical stabilizing conditions.  相似文献   

4.
Mercury radiotracer diffusion results are presented, in the range 254 to 452°C, for bulk and epitaxial CdxHg1–xTe, and we believe this to be the first report for metalorganic vapor phase epitaxy (MOVPE) grown CdxHg1–xTe. For all growth types studied, with compositions of xCd=0.2±0.04, the variation of the lattice diffusion coefficient, DHg, with temperature, under saturated mercury partial pressure, obeyed the equation: DHg=3×10−3 exp(−1.2 eV/kT) cm2 s−1. It was found to have a strong composition dependence but was insensitive to changes of substrate material or crystal orientation. Autoradiography was used to show that mercury also exploited defect structure to diffuse rapidly from the surface. Dislocation diffusion analysis is used to model defect tails in MOVPE CdxHg1–xTe profiles.  相似文献   

5.
The growth history of Hg1−xCdxTe films deposited on (100) CdTe substrates by chemical vapor transport (CVT) has been studied, for the first time, by using a transient growth technique. The observed morphological evolution of Hg1−xCdxTe films deposited at 545°C shows a transition behavior from three-dimensional (3D) islands to two-dimensional (2D) layer growth. The experimental results indicate that the so-called critical time needed for the above morphological transition is about lh under present experimental conditions. Based on the chemical bonding properties of Hg1−xCdxTe, and on the behavior of the morphological transition, the Stranski-Krastanov growth mode is suggested for the epitaxial growth system. The time dependence of the growth thickness, of the growth rate (R100) along the [100] direction, and of the surface composition all reveal a transient behavior. These are related to the nature of the Hg1-xCdxTe/ (100)CdTe heterojunction and to the surface reactions. Comparison of the growth rates and of the total mass deposited as a function of time shows the relationship between epitaxial growth and mass flux of the Hg1−xCdxTe-HgI2 chemical vapor transport system.  相似文献   

6.
The effects of substrate misorientation on Hg1−xCdxTe films, deposited on 3° off-(100) CdTe substrates by chemical vapor transport (CVT), have been studied for the first time using a transient growth technique. The morphological evolution of Hg1−xCdxTe films deposited on the vicinal CdTe substrates at 545°C shows a transition from three-dimensional islands to two-dimensional layer growth. The time and thickness required for the above morphological transition is about 0.75 h and 7 μm, respectively, under present experimental conditions. The pronounced long-range-terrace surface morphology of the Hg1−xCdxTe films illustrates the strong effects of the misorientation of the CdTe substrates and of the growth kinetics on the CVT growth of this hetero-epitaxial system. The transient behavior of the surface morphology, of the surface composition, and of the growth rate all reveal the influences of the 3° misorientation of the (100) CdTe substrates on the Hg1−xCdxTe epitaxy. The experimental mass flux results of the Hg1−xCdxTe-HgI2 CVT system under transient and steady-state conditions can be related to the surface kinetics and to the thermodynamic properties of the system. The combined results show that the interface kinetics are not fixed in the transient regime and that they are coupled to the vapor mass transport.  相似文献   

7.
Critical thickness in the HgCdTe/CdZnTe system   总被引:2,自引:0,他引:2  
We present an analysis of the critical thickness of Hg1−xCdxTe on Cd1−yZnyTe substrates as a function of x and y and show that a very tight control of the substrate composition is needed to produce dislocation-free epi-layers. Hg1−xCdxTe layers on relaxed underlayers of different compositions of Hg are also examined.  相似文献   

8.
A study on preparation of Cd0.96Zn0.04Te(211)B substrates for growth of Hg1−xCdxTe epitaxial layers by molecular beam epitaxy (MBE) was investigated. The objective was to investigate the impact of starting substrate surface quality on surface defects such as voids and hillocks commonly observed on MBE Hg1−xCdxTe layers. The results of this study indicate that, when the Cd0.96Zn0.04Te(211)B substrates are properly prepared, surface defects on the resulting MBE Hg1−xCdxTe films are reduced to minimum (size, ∼0.1 m and density ∼500/cm2) so that these MBE Hg1−xCdx Te films have surface quality as good as that of liquid phase epitaxial (LPE) Hg1−xCdxTe films currently in production in this laboratory.  相似文献   

9.
This work deals with the study by means of radioactive tracers and autoradiography, as well as measuring of galvanomagnetic properties, of Ga and In doping of epitaxial CdxHg1−xTe layers during their crystallization from a Te-rich melt. Ga and In were introduced in the form of Ga72 and In114 master alloys with Te. The effective distribution coefficients of Ga and In during the crystallization of the CdxHg1−xTe solid solutions with x=0.20 to 0.23 were determined by cooling the Te-base melt to 515–470°C. Depending on the concentration of the dopants and the time-temperature conditions of CdxHg1−xTe growth, these ratios for Ga and In were 1.5–2.0 and 1.0–1.5, respectively. The electrical activity of Ga and In was determined after annealing of the CdxHg1−xTe layers in saturated Hg vapor at 270–300°C. In doping of the epitaxial layers to (3–8)×1014 cm−3 with subsequent annealing in saturated Hg vapor at ∼270°C increases the carrier lifetime approximately by a factor of two as compared with the undoped material annealed under the same conditions.  相似文献   

10.
A vacuum-compatible process for carrying out lithography on Hg1−xCdxTe and CdTe films was previously demonstrated. It was shown that hydrogenated amorphous silicon (a-Si:H) could be used as a dry resist by projecting a pattern onto its surface using excimer laser irradiation and then developing that pattern by hydrogen plasma etching. Pattern transfer to an underlying Hg1−xCdxTe film was then carried out via Ar/H2 plasma etching in an electron cyclotron resonance (ECR) reactor. Despite the successful demonstration of pattern transfer, the possibility of inducing harmful effects in the Hg1−xCdxTe film due to this vacuum lithography procedure had not been explored. Here we present structural and surface compositional analyses of Hg1−xCdxTe films at key stages of the a-Si:H vacuum lithography procedure. X-ray diffraction double crystal rocking curves taken before and after a-Si:H deposition and after development etching were identical, indicating that bulk structural changes in the Hg1−xCdxTe film are not induced by these processes. Cross-section transmission electron microscopy studies show that laser-induced heating in the 350 nm thick a-Si:H overlayer is not sufficient to cause structural damage in the underlying Hg1−xCdxTe surface. In vacuo surface analysis via Auger electron spectroscopy and ion scattering spectroscopy suggest that the hydrogen plasma development process produces Hg-deficient surfaces but does not introduce C contamination. However, after ECR plasma etching into the Hg1−xCdxTe film, the measured x value is much closer to that of the bulk.  相似文献   

11.
The low incident angle (surface analysis) and the conventional wide angle (bulk analysis) x-ray diffraction techniques were employed to investigate the existence of a miscibility gap in the Hg1−xCdxTe system. Samples of initial composition Hg0.46Cd0.54Te were annealed at 140 and 400°C, respectively, for four weeks. The diffraction planes (531) and (642) have been selected for the x-ray diffraction analysis. The results of this work provide the first, direct experimental evidence for the existence of a miscibility gap at lower temperature in the Hg1−xCdxTe system. The phase separation occurs primarily in a thin surface layer at 140°C and is reversible after annealing at 530°C. The compositions of the two compounds at the tie-line at 140°C are Hg0.22Cd0.78Te and Hg0.63Cd0.37Te.  相似文献   

12.
Starting with powdered Hg1−xCdxTe, several tie-lines at 500 and 560°C were established using an energy dispersive spectrometer on a scanning electron microscope for the quantitative analysis. After holding at 500 or 560°C for time periods based upon the powder size and the published interdiffusion constant, then water quenching to room temperature, the primary grains were found to be uniform in composition and covered with a 5-6 μ layer of HgTe or low x Hg1−xCdxTe. The primary grain and overall compositions establish directions for tie-lines that are in good agreement with published experimental and theoreti-cal results.  相似文献   

13.
The alloy composition of Hg1−xCdxTe should be controlled during growth, so that the desired band gap and the lattice-matched layer may be obtained. In-situ spectroscopic ellipsometry, now commercially available, enables one to acquire spectral data during growth. If one knows the optical dielectric function as a function of alloy composition and temperature, the technique can be fully used to monitor and control temperature, the thickness, and the alloy composition. For this purpose, we first obtained temperature dependent spectral data of Hg1−xCdxTe by spectroscopic ellipsometry (SE). The spectral data of Hg1−xCdxTe with x = 1,0.235, and 0.344 were obtained from room temperature to 800Kin the photon energy range from 1.3 to 6 eV. The spectral data revealed distinctive critical point structures at E0, E00, E1, E11, E2(X), and E2(Σ). Critical point energies decreased and linewidths increased monotonically as temperature increased. The model for the optical dielectric function enabled (i) the critical point parameters to be determined accurately, and (ii) the spectral data to be expressed as a function of temperature within and outside the experimental range.  相似文献   

14.
The current status of the implementation and refinement of two wafer state sensors forin situ monitoring and control during molecular beam epitaxial (MBE) growth of Hg1−xCdxTe will be reported. First a rapid scan spectral ellipsometer has been developed and employed for precisely measuring compositions of Hg1−xCdxTe alloys during growth. MBE films in the composition range x = 0.20 to 0.30 have been grown andin situ spectra taken at the growth temperature (180°C) and at room temperature. The MBE films were treated as single layers without the need to invoke any surface film (due to surface roughness, oxide, or of any different composition) as required for exsitu data. The least squares fit over the whole spectral range was used as a measure of the precision. The film composition was also determinedex situ by wavelength dispersive analysis of x-rays and by Fourier transform infrared (FTIR) spectrometry after verifying that there was no lateral variation. A precision of better than ±0.0015 has so far been demonstrated usingin situ spectral ellipsometry for Cd composition or CdTe mole fraction, x, measurements. This compares with ±0.003 for single wavelength ellipsometry. The composition of Hg1−xCdxTe films were also monitored during growth. A spectral pyrometer based on a FTIR spectrometer has also been developed for substrate temperature measurements during growth. The spectral pyrometer measures both the emission and reflectance to give the emissivity of a growing sample over a range of wavelengths spanning the peak of the grey body emission. From the reflectivity measurements, the thickness (in excess of 1 μm) of the growing film is also determined from the interference fringes. The spectral ellipsometer is only capable of measuring thicknesses up to C.a 5000°A (i.e. optically thin). Excellent agreement is obtained between thein situ (at growth temperature) andex situ (at room temperature) thickness measurements. The small discrepancy can be explained by the refractive index of Hg1−xCdxTe being 5% higher at the growth temperature than at room temperature. The combination ofin situ sensors now provides a means of continuously monitoring the composition and thickness of the growing Hg1−xCdxTe film.  相似文献   

15.
The technique of spectroscopic ellipsometry (SE) has been utilized to monitor in real-time and precisely control the surface temperature of Hg1−xCdxTe during molecular beam epitaxy. Due to the temperature dependence of the Hg sticking coefficient under Hg-deficient growth conditions, the near-surface composition of an epilayer is extremely sensitive to surface temperature. SE data were acquired in real time and modeled using a previously established library of dielectric functions of Hg1−xCdxTe as a function of composition. Utilizing SE-generated compositional profiles as a guide, substrate heating power was adjusted in such a way as to minimize composition transients. To demonstrate the effectiveness of the technique, we have used SE to control the temperature of HgCdTe epilayer surfaces during deposition on three-inch (211)CdZnTe/ZnTe/Si composite substrates mounted on indium free holders.  相似文献   

16.
Hg1−xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm−3 for Bi up to 1017cm−3 for phosphorus and As implying a distribution coefficient varying from <10−5 for Bi up to 10−3 for P at growth temperature of ∼500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicatedn top conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1−xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.  相似文献   

17.
Investigation into resonant-cavity-enhanced (RCE) HgCdTe detectors has revealed a discrepancy in the refractive index of the CdTe layers grown by molecular beam epitaxy (MBE) for the detectors, compared with the reported value for crystalline CdTe. The refractive index of the CdTe grown for RCE detectors was measured using ellipsometry and matches that of CdTe with an inclusion of approximately 10% voids. X-ray measurements confirm that the sample is crystalline and strained to match the lattice spacing of the underlying Hg(1−x)Cd(x)Te, while electron diffraction patterns observed during growth indicate that the CdTe layers exhibit some three-dimensional structure. Secondary ion mass spectroscopy results further indicate that there is enhanced interdiffusion at the interface between Hg(1−x)Cd(x)Te and CdTe when the Hg(1−x)Cd(x)Te is grown on CdTe, suggesting that the defects are nucleated within the CdTe layers.  相似文献   

18.
This paper reviews recent developments in the characterization of planar p-on-n photodiodes fabricated from long- and mid-wavelength Hg1−x Cd x Te at␣the Electronics and Information Technology Laboratory (LETI). The Hg1−x Cd x Te epitaxial layers were grown by both liquid-phase and molecular-beam epitaxy. Planar p-on-n photodiodes were fabricated by arsenic implantation into an indium-doped Hg1−x Cd x Te base layer. Electro-optical characterization on these p-on-n photodiodes showed low leakage currents (shunt resistance > 10 GΩ) and mean R 0 A values comparable to the state of the art, i.e., equal to 5000 Ω cm2 at λ c = 9.3 μm (λ c: cutoff wavelength). Results of focal-plane arrays operating in both the long-wavelength infrared (IR) and middle-wavelength IR bands are reported, with noise equivalent delta temperature and responsivity values at λ c = 9.3 μm in excess of 99.64%. These results demonstrate the viability and technological maturity of both material growth and device processing.  相似文献   

19.
The results of an experimental study of samples of MnxHg1−x Te films grown by liquid-phase epitaxy on a Cd0.96Zn0.04Te substrate are presented. It shows that, as a result of the diffusion of cadmium from the substrate, a CdxMnyHg1−xy Te film with a variable band-gap layer is formed close to the 〈epitaxial-film〉-substrate interface. The appearance of this variable band gap is revealed by the transport phenomena. The temperature dependence of the band gap E g (T) is determined in a linear approximation on T from the results of a theoretical analysis of the temperature dependences of the free-carrier concentration and mobility. It is shown that averaging the semiempirical dependences for the ternary compounds with the extreme compositions, using the virtual-crystal approximation, can produce large errors when determining E g (T) in a specific semiconductor. Fiz. Tekh. Poluprovodn. 31, 268–272 (March 1997)  相似文献   

20.
A series of n-type, indium-doped Hg1−xCdxTe (x∼0.225) layers were grown on Cd0.96Zn0.04Te(311)B substrates by molecular beam epitaxy (MBE). The Cd0.96Zn0.04Te(311)B substrates (2 cm × 3 cm) were prepared in this laboratory by the horizontal Bridgman method using double-zone-refined 6N source materials. The Hg1−xCdxTe(311)B epitaxial films were examined by optical microscopy, defect etching, and Hall measurements. Preliminary results indicate that the n-type Hg1−xCdxTe(311)B and Hg1−xCdxTe(211)B films (x ∼ 0.225) grown by MBE have comparable morphological, structural, and electrical quality, with the best 77 K Hall mobility being 112,000 cm2/V·sec at carrier concentration of 1.9×10+15 cm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号