首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vascular endothelial growth factor (VEGF) is a potent mitogenic and permeability factor targeting predominantly endothelial cells. At least two tyrosine kinase receptors, Flk-1 and Flt-1, mediate its action and are mostly expressed by endothelial cells. VEGF and VEGF receptor expression are upregulated by hypoxia in vivo and the role of VEGF in hypoxia-induced angiogenesis has been extensively studied in a variety of disease entities. Although VEGF and its receptors are abundantly expressed in the lung, their role in hypoxic pulmonary hypertension and the accompanying vascular remodeling are incompletely understood. We report in this in vivo study that hypoxia increases mRNA levels for both VEGF and Flk-1 in the rat lung. The kinetics of the hypoxic response differ between receptor and ligand: Flk-1 mRNA showed a biphasic response to hypoxia with a significant, but transient, rise in mRNA levels observed after 9-15 h of hypoxic exposure and the highest levels noted after 3 wk. In contrast, VEGF mRNA levels did not show a significant increase with acute hypoxia, but increased progressively after 1-3 wk of hypoxia. By in situ hybridization, VEGF mRNA was localized predominantly in alveolar epithelial cells with increased signal in the lungs of hypoxic animals compared with controls. Immunohistochemical staining with anti-VEGF antibodies localized VEGF peptide throughout the lung parenchyma and was increased in hypoxic compared with normoxic animals. Furthermore, hypoxic animals had significantly higher circulating VEGF concentrations compared with normoxic controls. Lung vascular permeability as measured by extravasation of Evans Blue dye was not significantly different between normoxic and hypoxic animals, although a tendency for increased permeability was seen in the hypoxic animals. These findings suggest a possible role for VEGF in the pulmonary response to hypoxia.  相似文献   

2.
The effect of pO2s reduced below physiological levels on GSIR by isolated islets of Langerhans was investigated with a microperifusion apparatus that provided control of pO2 and rapid dynamic response. Second-phase insulin secretion was reduced substantially by hypoxia. The response to lower pO2 was rapid and reversible. Although the steady, normoxic (pO2 = 142 mmHg) second-phase secretion rate varied widely from one islet preparation to another, the ratio of Sx to S142 for each preparation could be represented by a single curve that exhibited a continuous reduction with decreasing pO2. For rat islets perifused 1 day after isolation, the secretion rate was nearly 100% of the normoxic value at a pO2 of 60 mmHg, 50% at 27 mmHg (P50, the pO2 at which the S142 is reduced by 50%), and approximately 2% at 5 mmHg. Oxygen sensitivity of second-phase secretion rate declined after 1 wk of in vitro culture: P50 was 13 mmHg after 1 wk and remained at 10 mmHg after 2-5 wk of culture. Canine islets exhibited a P50 of 16 mmHg after 1 wk of culture. The reduction in insulin secretion is thought to be associated with the existence of pO2 gradients outside and inside the isolated islets, resulting in exposure of islet cells to low pO2 levels that decrease radially from the periphery to the core. We hypothesize that the effect of low pO2 on S is manifested through depletion of the energy stores of the beta-cells. The effect of hypoxia on S may be an important factor in some in vitro secretion studies and may play a critical role in the effectiveness of transplanted islets before their revascularization and of immunoisolated islet implantation devices.  相似文献   

3.
4.
5.
PURPOSE: Integrins alphavbeta3 and alphavbeta5 are cell-to-matrix adhesion molecules that have been reported to mediate vascular cell proliferation and migration. The authors investigated the regulation of expression of these angiogenic integrins by hypoxia and vascular endothelial growth factor (VEGF) in retinal microvascular endothelial cells in culture. METHODS: Cultured bovine retinal capillary endothelial cells were exposed to human recombinant VEGF under normoxic (95% air, 5% CO2) conditions to assess the effects of VEGF. Hypoxia studies were performed under lower oxygen concentration (0.5%-1.5% O2) induced by nitrogen replacement in constant 5% CO2 conditions. Integrin family mRNA and protein expression were assessed by northern blot analysis and immunoprecipitation. RESULTS: VEGF (25 ng/ml) increased integrin alphav, beta3, and 35 mRNA after 24 hours 6.1+/-0.8-fold (P < 0.001), 5.9+/-1.1-fold (P < 0.001), and 1.9+/-0.2-fold (P < 0.01), respectively. Similarly, hypoxia stimulated gene expression of integrin alphav and beta3 after 24 hours by 5.1+/-1.7-fold (P < 0.01) and 3.0+/-0.5-fold (P < 0.01), respectively, and integrin beta5 after 9 hours 1.4+/-0.2-fold (P < 0.05). This hypoxia-induced, integrin alphav mRNA elevation was inhibited significantly by anti-VEGF neutralizing antibody. Also, a conditioned medium from confluent endothelial cells maintained under hypoxic conditions for 24 hours produced a 7.1+/-1.1-fold increase (P < 0.001) in integrin alphav mRNA expression after 24 hours, which was reversed by anti-VEGF neutralizing antibody. Induction of integrin alphav by VEGF and hypoxia was confirmed in the protein level. CONCLUSIONS: These data suggest that hypoxia stimulates expression of vascular integrins alphavbeta3 and alphavbeta5 in retinal microvascular endothelial cells partially through autocrine-paracrine action of VEGF induced by the hypoxic state.  相似文献   

6.
Vascular endothelial growth factor (VEGF) can induce proliferation of sinusoidal endothelial cells. Its mRNA expression was increased in proliferating rat hepatocytes in primary culture. To clarify a role of VEGF in liver after necrosis, expressions of VEGF and its receptors were measured in the liver or liver cells isolated from rats after carbon tetrachloride intoxication. Hepatic VEGF mRNA expression increased later than 24 h after the intoxication and became prominent at 168 h when liver necrosis disappeared, while hepatic mRNA expressions of its receptors increased between 24 and 72 h. VEGF mRNA expression was increased in Kupffer cells, hepatic macrophages and stellate cells isolated from rats between 24 and 72 h after the intoxication and in hepatocytes at 168 h compared to those cells from normal rats. Immunohistochemical VEGF stains were comparable to such results. Vascular endothelial cells existed abundantly in the necrotic areas, and sinusoidal endothelial cells appeared following disappearance of the necrotic areas. VEGF mRNA expression in hepatocytes isolated from 70% resected liver was increased at 12 h after the operation and became marked between 72 and 168 h. Similar increase of hepatic VEGF expression was immunohistochemically seen. In conclusion, VEGF derives from nonparenchymal as well as parenchymal cells in rat liver after necrosis. The former might contribute to vascular endothelial cell proliferation and the latter to sinusoidal endothelial cell regeneration.  相似文献   

7.
BACKGROUND: To determine if hypoxia stimulates the proliferation of retinal microvessel endothelial cells in culture. METHODS: Bovine retinal microvessel endothelial cells were cultured in normoxic (95% air, 5% CO2) and hypoxic (2% O2, 5% CO2, 93% N2) conditions. Endothelial cells were identified by acetylated LDL and Factor VIII-related antigen immunocytochemical staining. Cells from passages three to eight were used in these experiments. Proliferation assays included cell counts by hemocytometer and autoradiographic analysis of incorporated 3H-thymidine (3H-TdR). RESULTS: At day 4, cell counts of endothelial cells in hypoxia showed a 133% increase over those grown in normoxic conditions (N = 25, P < 0.01). Cell counts per day for 5 days were 121-181% greater in hypoxia. Autoradiography of endothelial cells exposed to 3H-TdR and counted every 12 hours for 60 hours exhibited labeling indices 112-118% higher in hypoxic conditions (P < 0.0001). Endothelial cells cultured under hypoxic conditions were smaller and spindle-shaped, whereas those grown under normoxic conditions were larger and more polygonal. CONCLUSIONS: Hypoxia increases DNA synthesis and stimulates proliferation of retinal microvessel endothelial cells in vitro and induces alterations in morphology. These results may be relevant to microvessel angiogenesis, which occurs in vivo under ischemic conditions.  相似文献   

8.
We examined the hypoxic tolerance phenomenon in vitro. Brief exposure to hypoxia induced the production of basic fibroblast growth factor (bFGF) mRNA and protein in rat cortical neurons and protected them from hypoxic injury. Cortical neurons were cultured from 18th-day rat embryos in a serum-free medium and subjected to brief (4 h) and/or prolonged (24 h) hypoxia. Neuronal damage was assessed by quantifying lactate dehydrogenase (LDH) activity in the medium. After brief hypoxia, LDH release was identical to that of the controls, whereas prolonged hypoxia caused a significant increase in LDH release, indicating neuronal death. However, if brief hypoxia was applied 2 days prior to the prolonged hypoxia, no increase in LDH release was observed. The bFGF mRNA expression was assessed with Northern blot and protein immunoreactivity with Western blot analysis. The brief period of hypoxia caused a 2.5-fold increase in bFGF mRNA and considerable bFGF protein expression 1 day later, but prolonged hypoxia caused increase in the expression of bFGF mRNA at 2 days and no protein expression until 3 days after the start of the hypoxia. When cells were subjected to prolonged hypoxia 2 days after brief hypoxia, however, no increase in bFGF mRNA was observed, while bFGF protein was expressed continuously. We also observed that exogenously applied bFGF reduced neuronal injury produced by prolonged hypoxia. The results obtained with this model suggest that brief hypoxia induces bFGF protein and thus tolerance to subsequent lethal hypoxia. Basic FGF might play a role as a tolerance-associated factor in this process. Thus, an in vitro model is useful for assessing the response of cortical neurons to hypoxic stress and for researching new factors related to ischemic tolerance.  相似文献   

9.
Evidence has accumulated that vascular endothelial growth factor (VEGF) is expressed in the heart, and its expression is markedly increased in response to hypoxia. Recently, it was shown that pulsatile myocardial stretch in vivo markedly enhanced VEGF mRNA level in the heart. To investigate whether pulsatile mechanical stretch really stimulates VEGF expression by cardiac myocytes, using an in vitro preparation, we examined the secretion of VEGF into the culture media from cardiac myocytes subjected to pulsatile stretch. We found that pulsatile mechanical stretch induced rapid secretion of VEGF by cultured rat cardiac myocytes and mRNA expression of VEGF and VEGF receptors in the cardiac myocytes. We also found that the stretch-induced secretion of VEGF was at least in part mediated by TGF-beta. These data provide the direct evidence that mechanical overload itself can induce VEGF secretion by cardiac myocytes, which may play a role in ameliorating the relative myocardial hypoxia.  相似文献   

10.
Addition of 10% albumin to the digestion medium has been suggested to enhance yield and integrity of harvested islets by inhibition of proteolytic activities and to improve endocrine function early after transplantation. The aim of this study was to evaluate in vivo by means of intravital fluorescence microscopy whether this rapid reversal of hyperglycemia after transplantation is due to improved graft vascularization. Pancreatic islets were isolated from Syrian golden hamsters by collagenase digestion using either solely Hank's balanced salt solution (HBSS) or HBSS supplemented with 10% human serum albumin. Islets were then transplanted into the dorsal skinfold chamber of syngeneic animals (control: N = 8 animals, n = 50 islets; albumin: N = 7, n = 41). The grafts' microvasculature was analysed on days 6, 10, and 14 after transplantation. Immunohistochemical staining for insulin was performed at the end of the microscopic observation period. Islet isolation with albumin supplementation did not increase islet yield. However, photomicroscopic analysis suggested a beneficial effect on the isolation process with improved islet integrity and prevention of outer margin irregularities, in particular in large islets. Analysis of revascularization 6 days after transplantation revealed in the control group a functional capillary density (FCD) of 477 +/- 47 cm-1. On day 10 FCD increased to 680 +/- 42 cm-1 with no further changes on day 14, indicating complete revascularization. Islets in the albumin group demonstrated a comparable FCD of 598 +/- 49 cm-1 on day 10 and complete revascularization on day 14 (655 +/- 45 cm-1). The angio-architecture of the islets was found similar in both groups, presenting with a glomerulum-like capillary network, comparable to that of pancreatic islets in situ. We conclude that the addition of 10% serum albumin to the collagenase digestion medium improves the preservation of the structural integrity of isolated pancreatic islets, however, does not influence the process of graft vascularization. Thus, improved early graft function may rather be due to superior preservation of islet cell integrity and function.  相似文献   

11.
The purpose of this study was to evaluate the effects of resident islet macrophage activation on beta cell function. Treatment of freshly isolated rat islets with TNF-alpha and LPS results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory actions of TNF + LPS are mediated by the intraislet production and release of IL-1 followed by IL-1-induced inducible nitric oxide synthase (iNOS) expression by beta cells. The IL-1R antagonist protein completely prevents TNF + LPS-induced nitrite production, iNOS expression and the inhibitory effects on glucose-stimulated insulin secretion by rat islets. Resident macrophages appear to be the source of IL-1, as a 7-day culture of rat islets at 24 degrees C (conditions known to deplete islets of lymphoid cells) prevents TNF + LPS-induced iNOS expression, nitrite production, and the inhibitory effects on insulin secretion. In addition, macrophage depletion also inhibits TNF + LPS-induced IL-1alpha and IL-1beta mRNA expression in rat islets. Immunocytochemical colocalization of IL-1beta with the macrophage-specific marker ED1 was used to provide direct support for resident macrophages as the islet cellular source of IL-1. IL-1beta appears to mediate the inhibitory actions of TNF + LPS on beta cell function as TNF + LPS-induced expression of IL-1beta is fourfold higher than IL-1alpha, and Ab neutralization of IL-1beta prevents TNF + LPS-induced nitrite production by rat islets. These findings support a mechanism by which the activation of resident islet macrophages and the intraislet release of IL-1 may mediate the initial dysfunction and destruction of beta cells during the development of autoimmune diabetes.  相似文献   

12.
13.
Brain hypoxia induces an increase in brain vascularity, presumably mediated by vascular endothelial growth factor (VEGF), but it is unclear whether VEGF is required to maintain the increase. In these studies, brain VEGF mRNA and protein levels were measured in adult mice kept in hypobaric chambers at 0.5 atm for 0, 0.5, 1, 2, 4, 7, and 21 days. Hypoxia was accompanied by a transient increase of VEGF mRNA expression: twofold by 0.5 day and a maximum of fivefold by 2 days; these were followed by a decrease at 4 days and a return to basal levels by 7-21 days. VEGF protein expression induced by hypoxia was bimodal, initially paralleling VEGF mRNA. There was an initial small increase at 12 h that reached a maximum by day 2, and, after a transient decrease on day 4, the protein expression increased again on day 7 before it returned to normoxic levels after 21 days. Thus, despite continued hypoxia, both VEGF mRNA and protein levels returned to basal after 7 days. These data suggest a metabolic negative-feedback system for VEGF expression during prolonged hypoxia in the brain.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen which stimulates angiogenesis. VEGF is regulated by multiple factors such as hypoxia, phorbol esters, and growth factors. However, data concerning the expression of VEGF in the different vascular cell types and its regulation by cAMP are not available. In the present study, we have investigated the effect of adenylate cyclase activation on VEGF mRNA expression in rat vascular cells in primary culture. Basal VEGF expression is greater in smooth muscle cells than in endothelial cells and fibroblasts. A 4-h treatment with forskolin (10(-5) M) induced a 2-fold stimulation of VEGF mRNA expression in smooth muscle cells and fibroblasts, but, in contrast, did not affect VEGF expression in endothelial cells. In smooth muscle cells, a pharmacologically induced increase in intracellular cAMP levels using iloprost or isoprenaline led to a rise in VEGF mRNA expression comparable to that induced by forskolin. Adenosine, which increases cAMP levels in smooth muscle cells, also increases VEGF expression. Moreover, the 2.2-fold stimulation of VEGF expression by adenosine was enhanced following a cotreatment with cobalt chloride (a hypoxia miming agent). The observed additive effect (4.3-fold increase) suggests that these two factors, hypoxia and adenosine, regulate VEGF mRNA expression in smooth muscle cells by independent mechanisms.  相似文献   

15.
Proinflammatory cytokines are implicated as effector molecules in the pathogenesis of IDDM. Interleukin-6 (IL-6) alone or in combination with IL-1beta inhibits glucose-stimulated insulin release from isolated rat pancreatic islets by unknown mechanisms. Here we investigated 1) if the effects of IL-6 are mimicked by ciliary neurotrophic factor (CNTF), another member of the IL-6 family of cytokines signaling via gp130, 2) the possible cellular mechanisms for these effects, and 3) if islet endocrine cells are a source of CNTF. CNTF (20 ng/ml) potentiated IL-1beta-mediated (5-150 pg/ml) nitric oxide (NO) synthesis from neonatal Wistar rat islets by 31-116%, inhibition of accumulated insulin release by 34-49%, and inhibition insulin response to a 2-h glucose challenge by 31-36%. CNTF potentiated IL-1beta-mediated NO synthesis from RIN-5AH cells by 83%, and IL-1beta induced islet inducible NO-synthase (iNOS) mRNA expression fourfold. IL-6 (10 ng/ml) also potentiated IL-1beta-mediated NO synthesis and inhibition of insulin release, whereas beta-nerve growth factor (NGF) (5 or 50 ng/ml) had no effect. mRNA for CNTF was expressed in rat islets and in islet cell lines. In conclusion, CNTF is constitutively expressed in pancreatic beta-cells and potentiates the beta-cell inhibitory effect of IL-1beta in association with increased iNOS expression and NO synthesis, an effect shared by IL-6 but not by beta-NGF. These findings indicate that signaling via gp130 influences islet NO synthesis associated with iNOS expression. We hypothesize that CNTF released from destroyed beta-cells during the inflammatory islet lesion leading to IDDM may potentiate IL-1beta action on the beta-cells.  相似文献   

16.
Although there is a recent increase in the use of the isolated pancreatic islets of the rat in the transplantation and functional studies, there has been no detailed quantitative assessment on the size and cellular constituents of islets after the isolation procedure. The present work was undertaken to study the size classes of the isolated islets and the morphometry of their cellular populations. Islets of the rat pancreas were isolated by using the intraductal collagenase digestion technique, the most commonly used procedure for the isolation of pancreatic islets. Different endocrine cells of the isolated islets were stained by immunoperoxidase staining techniques. The distribution of the cellular constituents of the isolated islets was similar to that of the intact islets of the normal pancreas; A, D, and PP cells were peripherally arranged around the centrally located B cells. However, morphometric quantitative study showed that the percent volume and percent number of A, D, and PP cells of the isolated islets were lower than those of the corresponding intact ones. Further, the mean true diameter of the isolated islets was lower than that of the intact ones. These data indicate loss of islet cells during the process of isolation. Most of the lost cells were from the periphery of islets. This may provide an explanation for the incomplete metabolic control and recurrence of hyperglycemia encountered after isolated islet transplantation in the treatment of diabetes mellitus. It seems that further refinements of the isolation techniques are necessary to obtain islet tissue with total cellular integrity, before a complete success in transplantation could be achieved.  相似文献   

17.
We prepared single-cell suspensions of Lewis rat ?RT1(1/l)? testicular cells and cultured these in vitro for 48 h under conditions that promoted the formation of cellular aggregates. In the absence of systemic immunosuppression, the transplantation of a sufficient quantity of these aggregates (containing 11 x 10(6) cells, (75% Sertoli cells), together with 2,000 purified Lewis rat islets, reversed the diabetic state for >95 days in 100% (5/5) of the chemically diabetic Wistar-Furth ?RT1(u/u)? recipients. Similar grafts consisting of islets alone or islets plus 50% fewer testicular cell aggregates survived for only 10 days. Functioning composite allografts harvested from normoglycemic animals at approximately 100 days showed healthy beta-cells in close association with Fas ligand-expressing Sertoli cells. Because no gene therapy protocol is required, the transplantation of composite grafts consisting of purified human allogeneic islets plus human allogeneic testicular cell aggregates can be applied in clinical islet transplantation as soon as it has been proven in a large animal model.  相似文献   

18.
Studies in animal models and humans suggest that myocardium may adapt to chronic or intermittent prolonged episodes of reduced coronary perfusion. Stable maintenance of partial flow reduction is difficult to achieve in experimental models; thus, in vitro cellular models may be useful for establishing the mechanisms of adaptation. Since moderate hypoxia is likely to be an important component of the low-flow state, isolated adult rat cardiac myocytes were exposed to 1% O2 for 48 hours to study chronic hypoxic adaptation. Hypoxic culture did not reduce cell viability relative to normoxic controls but did enhance glucose utilization and lactate production, which is consistent with an anaerobic pattern of metabolism. Lactate production remained transiently increased after restoration of normal O2 tension. Myocyte contractility was reduced (video-edge analysis), as was the amplitude of the intracellular Ca2+ transient (indo 1 fluorescence) in hypoxic cells. Relaxation was slowed and was accompanied by a slowed decay of the Ca2+ transient. These changes were not due to alterations in the action potential. Tolerance to subsequent acute severe hypoxia occurred in cells cultured in 1% O2 and was manifested as a delay in the time to full ATP-depletion rigor contracture during severe hypoxia and enhanced morphological recovery of myocytes at reoxygenation. The latter was still seen after normalization of the data for the prolonged time to rigor, suggesting a multifactorial basis for tolerance. An intervening period of normoxic exposure before subsequent acute severe hypoxia did not result in loss of tolerance but rather increased the delay to subsequent ATP depletion rigor. Cellular glycogen was preserved during chronic hypoxic exposure and increased after the restoration of normal O2 tension. As mitochondrial cytochromes should be fully oxygenated at levels well below 1% O2, hypoxic adaptation may be mediated by a low-affinity O2-sensing process. Thus, adaptations that occur during prolonged periods of moderate hypoxia are proposed to poise the myocyte in a better position to tolerate impending episodes of severe O2 deprivation.  相似文献   

19.
Islet cell ontogeny will define adult beta-cell mass and will consist of a balance of islet cell birth and death. We have investigated the ontogeny of factors that may be related to developmental apoptosis in the islets, insulin-like growth factor II (IGF-II) and inducible nitric oxide synthase (iNOS), in pancreata of young Wistar rats. Pancreata were collected from rats of 21 days gestation to 29 days postnatal age. In situ hybridization and immunohistochemistry showed that IGF-II was expressed and present in fetal and neonatal islet cells, but declined rapidly 2 weeks after birth. Little IGF-I was associated with fetal or postnatal islets. Apoptosis in islet cells was visualized by molecular histochemistry for DNA breakage in tissue sections. Apoptosis was low in the fetus, but increased in incidence postnatally so that 13% of islet cells were undergoing apoptosis on postnatal day 14, with the incidence declining thereafter. Immunohistochemistry for iNOS showed that it was expressed within beta-cells and was most abundant 12 days after birth. When islets were isolated from rat pancreata 20-22 days after birth, islet cell viability, DNA synthetic rate, and insulin release were reduced after incubation with interleukin-1beta, tumor necrosis factor, or interferon-gamma. An increased rate of islet cell survival was found after simultaneous incubation with IGF-I or -II. Cytokine-mediated islet cell death involved the induction of apoptosis. Islets isolated from neonatal rats were not killed after exposure to these cytokines at the same concentrations, but cytokine-induced cell death was seen when neonatal islets were incubated with a neutralizing antibody against IGF-II. These experiments show that a peak of islet cell apoptosis that is maximal in the rat pancreas 14 days after birth is temporally associated with a fall in the islet cell expression of IGF-II. IGF-II was shown to function as an islet survival factor in vitro. The induction of islet cell apoptosis in vivo may involve an increased expression of iNOS within beta-cells.  相似文献   

20.
Tumor hypoxia and high levels of expression of the urokinase-type plasminogen activator (uPA) receptor (uPAR) represent a poor clinical outcome for patients with various cancers. Here, we examined the effect of hypoxia on in vitro invasion of extracellular matrix and uPAR expression by human carcinoma cells. Compared with culture under 20% O2, culture for up to 24 hr under 1% or 4% O2 resulted in increased cell surface uPAR. However, the highest uPAR levels were observed in cells cultured under 1% O2. Culture of MDA-MB-231 breast carcinoma cells under hypoxia also resulted in increased uPAR mRNA levels. Furthermore, incubation with cobalt chloride or with an iron chelator also resulted in elevated uPAR expression, while presence of 30% carbon monoxide in the hypoxic atmosphere reduced the hypoxia-mediated uPAR mRNA upregulation. Increased uPAR expression was paralleled by higher cell-associated uPA levels and lower levels of secreted uPA as determined by gel zymography performed on cell extracts and culture-conditioned media. In addition, the in vitro invasiveness of MDA-MB-231 breast carcinoma cells was significantly higher when the invasion assay was performed under hypoxic conditions. This effect of hypoxia on invasion was abrogated by including in the assay a monoclonal, function-blocking anti-u PAR antibody or by the presence of 30% carbon monoxide in the hypoxic atmosphere. Our findings indicate that hypoxia stimulates carcinoma cell invasiveness by upregulating uPAR expression on the cell surface through a mechanism that requires a putative heme protein. Through a similar mechanism, hypoxia may stimulate tumor invasion and metastasis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号