首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Al-Ti-C体系的放热反应,通过真空热压烧结,原位合成了Ti2AlC/TiAl复合材料.借助于XRD,SEM,OM分析及力学性能测试,分析了Ti2AlC/TiAl复合材料微观组织与性能的关系,探讨了Ti2AlC增强增韧TiAl金属间化合物的机制.结果表明,其增强相为Ti2AlC,并有微量的Ti3AlC生成,基体相为TiAl.Ti2AlC的生成,细化了晶粒,其层状结构阻止了裂纹扩展.力学性能测试表明,该材料抗弯强度可达743.84 MPa,断裂韧度可达9.17 MPa.m1/2.  相似文献   

2.
采用放电等离子技术(SPS),利用Ti-Al-Ti_3AlC_2体系的原位反应制备Ti_2AlC/TiAl基复合材料。借助XRD、SEM和OM分析其组成及显微结构。结果表明,1100℃烧结后,Ti_3AlC_2全部转化为Ti_2AlC。产物由TiAl、Ti3Al和Ti_2AlC相组成。Ti_2AlC呈颗粒状分布于基体晶界处,部分钉扎于晶内。当Ti_3AlC_2掺杂量为10%时,综合力学性能最佳,维氏硬度、断裂韧性和抗弯强度分别达到了4.9 GPa、7.41 MPa·m1/2和699.9 MPa,较TiAl合金有较大提升。  相似文献   

3.
通过2TiC-Ti-1.2Al体系的原位热压反应制备Ti_3AlC_2陶瓷,然后以59.2Ti-30.8Al-10Ti_3AlC_2(质量分数,下同,%)为反应体系,采用放电等离子烧结技术制备Ti_2AlC/Ti Al基复合材料。借助XRD、SEM分析产物的相组成和微观结构,并测量其室温力学性能。结果表明:原位热压烧结产物由Ti_3AlC_2和TiC相组成,Ti_3AlC_2呈典型的层状结构,TiC颗粒分布在其间;SPS法制备的Ti_2AlC/Ti Al基复合材料主要由Ti Al、Ti_3Al和Ti_2AlC相组成,Ti_2AlC增强相主要分布于基体晶界处,发挥了晶界/晶内内生型强化相的增强作用。力学性能测试表明:Ti_2AlC/Ti Al基复合材料的密度、维氏硬度、断裂韧性和抗弯强度分别为3.85 g/cm~3、5.37 GPa、7.17 MPa·m~(1/2)和494.85 MPa,穿晶、沿晶及层状撕裂等混合断裂特征对改善性能发挥了重要作用。  相似文献   

4.
以Ti-Al-Ti_3AlC_2为反应体系,采用真空热压技术(1100℃×1 h)制备Ti_2AlC/TiAl基复合材料。借助XRD、SEM等测试手段分析相组成以及微观结构,并测量其密度、维氏硬度、抗弯强度、抗压强度和断裂韧性等室温力学性能。结果表明,产物主要由TiAl、Ti_2AlC和Ti_3Al相组成。利用Ti_3AlC_2分解反应原位自生的Ti_2AlC增强相主要分布于基体晶界处,部分钉扎于晶内,且随着Ti_2AlC生成量的增大,团聚现象加剧。室温力学性能测试表明,Ti_2AlC/TiAl基复合材料的力学性能明显优于单相TiAl材料,当Ti_3AlC_2掺杂量为10 mass%时,综合性能较好,密度、硬度、抗弯强度、抗压强度和断裂韧性分别为3.97 g/cm^3、4.82 GPa、488.61 MPa、1340 MPa和5.68 MPa·m^(1/2)。断裂机制主要表现为沿晶断裂、穿晶断裂、裂纹偏转与桥联;颗粒相增韧、裂纹偏转与桥联以及层状增韧是主要的增韧方式。  相似文献   

5.
以Ti-Al-Ti_3AlC_2为反应体系,采用真空热压技术(1100℃×1 h)制备Ti_2AlC/TiAl基复合材料。借助XRD、SEM等测试手段分析相组成以及微观结构,并测量其密度、维氏硬度、抗弯强度、抗压强度和断裂韧性等室温力学性能。结果表明,产物主要由TiAl、Ti_2AlC和Ti_3Al相组成。利用Ti_3AlC_2分解反应原位自生的Ti_2AlC增强相主要分布于基体晶界处,部分钉扎于晶内,且随着Ti_2AlC生成量的增大,团聚现象加剧。室温力学性能测试表明,Ti_2AlC/TiAl基复合材料的力学性能明显优于单相TiAl材料,当Ti_3AlC_2掺杂量为10 mass%时,综合性能较好,密度、硬度、抗弯强度、抗压强度和断裂韧性分别为3.97 g/cm~3、4.82 GPa、488.61 MPa、1340 MPa和5.68 MPa·m~(1/2)。断裂机制主要表现为沿晶断裂、穿晶断裂、裂纹偏转与桥联;颗粒相增韧、裂纹偏转与桥联以及层状增韧是主要的增韧方式。  相似文献   

6.
采用自蔓延燃烧合成及真空电弧熔炼的方法,以碳纤维(Cf)、钛粉及铝粉为原料,合成了Ti2AlC/TiAl复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了复合材料的物相组成和微观结构,讨论了原位合成Ti2AlC的反应和二次Ti2AlC的析出过程。结果表明,复合材料铸锭由Ti2AlC、TiAl和Ti3Al3相组成,基体由α2(Ti3Al)+γ(TiAl)片层和γ(TiAl)等轴晶粒构成,原位自生的Ti2AlC分布均匀,呈短纤维状或颗粒状。1200℃均匀化热处理促使Ti3Al分解为TiAl和Ti2AlC,导致Ti2AlC粗化,同时基体表面析出细小的二次Ti2AlC颗粒。  相似文献   

7.
通过2TiC-Ti-1.2Al体系的原位热压反应制备了Ti3AlC2陶瓷,然后以59.2Ti-30.8Al-10Ti3AlC2(wt%)为反应体系,采用放电等离子烧结技术制备出Ti2AlC/TiAl基复合材料。借助XRD、SEM分析了产物的相组成和微观结构,并测量了其室温力学性能。结果表明:原位热压烧结产物由Ti3AlC2和TiC相组成,Ti3AlC2呈典型的层状结构,TiC颗粒分布在其间。SPS法制备的Ti2AlC/TiAl基复合材料主要由TiAl、Ti3Al和Ti2AlC相组成,Ti2AlC增强相主要分布于基体晶界处,表现为晶界/晶内强化作用。力学性能测试表明:Ti2AlC/TiAl基复合材料的密度、维氏硬度、断裂韧性和抗弯强度分别为3.85 g/cm3、5.37 GPa、7.17 MPa?m1/2和494.85 MPa。  相似文献   

8.
利用放电等离子烧结(SPS)技术,原位制备Ti2AlC/TiAl复合材料,并对其进行多步热处理,研究增强相Ti2AlC和微量元素B对Ti2AlC/TiAl复合材料热处理组织的细化作用。研究发现,在热处理过程中,Ti2AlC和B能够显著抑制TiAl基体中γ晶粒和α2/γ层片晶团的长大,有效地细化Ti2AlC/TiAl复合材料的热处理组织。显微组织的细化能够显著强韧化复合材料,其中经1390℃热处理的复合材料的弯曲强度达到957.9MPa,断裂韧性达到20.73MPa·m^1/2。  相似文献   

9.
采用粉末冶金的方法在1000℃和30 MPa的热压条件下,烧结制备了以Ti3AlC2为增强相的Ti3AlC2/Cu复合材料,研究了增强相含量(10%~40%)对复合材料的显微结构、抗弯强度、硬度和电阻率的影响.结果表明:Ti3AlC2能够有效增强铜,当Ti3AlC2含量为30%时,增强效果最佳,复合材料的抗弯强度达1033 MPa,最大形变为2.5%,增强相含量继续增加时,复合材料的强度反而降低;随着增强相含量的增加,复合材料渐趋脆性断裂,同时复合材料的电阻率基本呈线性升高.  相似文献   

10.
通过无压烧结技术和机械合金化技术,在烧结温度为870 °C,保温时间为2.5h的工艺条件下,制备了四种不同体积含量的Ti3AlC2 颗粒含量的Ti3AlC2/ZA27复合材料。研究了Ti3AlC2 颗粒含量对Ti3AlC2 /ZA27复合材料的硬度,密度,拉伸强度和弯曲强度的影响。结果表明界面处的微弱的化学反应有助于提高复合材料的界面结合能力,进而提高Ti3AlC2 /ZA27复合材料的机械性能。此外,随着Ti3AlC2 颗粒含量增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度都随之增大,这主要归因于纳米尺度的Ti3AlC2颗粒的弥散增强结果。然而,随着Ti3AlC2 颗粒的增加到40 vol. %, 由于孔隙的增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度又出现下降。对比制得的四种Ti3AlC2 /ZA27复合材料,30Ti3AlC2/ZA27复合材料拥有最大的抗拉强度、抗弯曲强度以及维氏硬度,分别为310 MPa,528 MPa 和1.24 GPa. 这些优异的性能除了归因于良好的界面结合,还归因于Ti3AlC2颗粒的细晶强化和弥散强化作用。  相似文献   

11.
利用BP人工神经网络将Ti2AlC/TiAl复合材料的快速热处理工艺参数(热处理温度,B的含量)-性能(显微硬度、弯曲强度),建立起关系网络模型。并通过BP神经网络,预测了Ti2AlC/TiAl复合材料在加入B元素和未加B元素的情况下的性能变化。研究表明:所建立的网络可以很好地反映出本材料的工艺-性能之间的关系,并且具有一定的精度,网络模型可以用来预测不同实验条件下Ti2AlC/TiAl复合材料的性能。加入B元素的Ti2AlC/TiAl复合材料的性能明显高于未加入B元素的。  相似文献   

12.
利用BP人工神经网络将Ti2AlC/TiAl复合材料的快速热处理工艺参数(热处理温度,B的含量)-性能(显微硬度、弯曲强度),建立起关系网络模型.并通过BP神经网络,预测了Ti2AlC/TiAl 复合材料在加入B元素和未加B元素的情况下的性能变化.研究表明:所建立的网络可以很好地反映出本材料的工艺-性能之间的关系,并且具有一定的精度,网络模型可以用来预测不同实验条件下Ti2AlC/TiAl复合材料的性能.加入B元素的Ti2AlC/TiAl复合材料的性能明显高于未加入B元素的.  相似文献   

13.
分别用3Ti-Al-2C和2TiC-Ti-Al粉用原位热压技术制备Ti3AlC2陶瓷.采用XRD、DTA、SEM等测试手段研究其物相组成、反应过程及显微结构.结果表明:1300 ℃下3Ti-Al-2C体系的合成产物为层状Ti3AlC2、TiC和Al2O3相,1500 ℃下2TiC-Ti-Al体系的合成产物基本为层状Ti3AlC2相,纯度较高.在Ti-Al-C体系中,首先发生Ti与C反应生成TiC,接着发生Ti与Al反应相继生成TiAl3和TiAl,随后发生TiAl和TiC反应生成Ti2AlC,最后Ti2AlC和TiC反应生成Ti3AlC2.同时,分析了TiC掺杂对TiC-Ti-Al体系原位合成Ti3AlC2的影响.  相似文献   

14.
以Ti3AlC2和Cu粉作为原料,原位热压制备一系列Cu/Ti3AlC2复合材料,并研究Ti3AlC2含量对复合材料生成相、显微组织、力学和电学性能的影响。实验结果表明,在1150℃的高温下,不管Ti3AlC2的含量,Al都从Ti3AlC2中溶出进入液相Cu中,反应生成新的复合相。当Ti3AlC2原料的体积分数为40%~60%时,复合材料由Ti3C2相和Cu(Al)合金相组成。Cu/Ti3AlC2复合材料具有高强度及良好的断裂韧性和导电性,归因于Ti3C2聚集薄层与Cu(Al)合金层之间的牢固结合以及Cu(Al)相构成的空间网络结构。当Ti3AlC2原料的体积分数为70%或80%时,复合材料由Ti3C2和Cu9Al4金属间化合物组成,随着Ti3AlC2含量的增加,其强度和断裂韧性减小,硬度和电阻率增大。  相似文献   

15.
SCS-6 SiC纤维增强钛基复合材料的界面反应   总被引:3,自引:0,他引:3  
SCS-6 SiC纤维增强Super α2钛基复合材料界面反应较严重,其反应产物分布可达6层之多;SCS-6 SiC/Ti2AlNb及SCS-6 SiC/IMI834复合材料仅形成3-4层界面反应产物SCS-6 SiC/IMI834复合材料在界面处形成的S2硅化物可在一定温度下阻止反应的进一步进行,使复合材料具有很好的热稳定性.对界面反应热力学研究表明,Ti3Al+C→Ti3AlC反应导致了界面反应产物Ti3AlC的形成.  相似文献   

16.
利用放电等离子烧结(SPS)技术,原位制备了Ti2AlC/TiAl复合材料,研究了多步热处理对Ti2AlC/TiAl显微组织与力学性能的影响.结果表明,通过多步热处理,Ti2AlC/TiAl的力学性能得到明显改善.其中在1390℃热处理时,弯曲强度达到957.9 MPa,断裂韧性达到20.73 MPa·m1/2.通过多步热处理,可以得到双态组织和晶粒更为细小均匀的近y组织的TiAl基体,复合材料的断裂模式转变为穿晶解理断裂.在热处理过程中,Ti2AlC能够显著抑制TiAl基体中y晶粒和α2/y层片晶团的长大,并且在一定程度上,阻碍α2/y层片晶团的形成.  相似文献   

17.
采用粉末冶金的方法在1000℃和30MPa的热压条件下,烧结制备了以Ti3AlC2为增强相的Ti3AlC2/Cu复合材料,研究了增强相含量(10%~40%)对复合材料的显微结构、抗弯强度、硬度和电阻率的影响。结果表明:Ti3AlC2能够有效增强铜,当Ti3AlC2含量为30%时,增强效果最佳,复合材料的抗弯强度达1033MPa,最大形变为2.5%,增强相含量继续增加时,复合材料的强度反而降低;随着增强相含量的增加,复合材料渐趋脆性断裂,同时复合材料的电阻率基本呈线性升高。  相似文献   

18.
Ti-Al-C体系中添加TiAl3对燃烧合成 Ti3AlC2粉体的影响   总被引:3,自引:0,他引:3  
以单质粉末Ti,Al和碳黑为原料,按Ti3AlC2化学计量比配料,燃烧产物主要物相是TiC1,只能得到少量Ti3AlC2相,但在保持原料配比不变的情况下,在反应物原料中添加金属间化合物TiAl3(质量分数为0-23.5%),燃烧产物中Ti3AlC2的含量随添加TiAl3量的增加而显著增多,成为燃烧产物的主要物相。从热力学和动力学的角度探讨了TiAl3对燃烧合成Ti3AlC2的影响机理。  相似文献   

19.
添加TiAl对燃烧合成Ti3AlC2粉体的影响   总被引:4,自引:0,他引:4  
采用Ti,Al和C粉末为反应物原料,研究了添加金属间化合物TiAl对燃烧合成Ti3AlC2的影响。从动力学和热力学的角度探讨了TiAl对燃烧合成Ti3AlC2的影响机理。实验结果表明,仅以单质粉末Ti,Al和碳黑为原料,按Ti3AlC2化学计量比配料,燃烧产物的主要物相是TiC,只能得到少量Ti3AlC2相,但在保持原料配比不变的情况下,在反应物原料中添加金属间化合物TiAl(20%-35%)(质量百分数)后,燃烧合成产物中Ti,AlC2的含量显著增加,成为燃烧产物的主要物相,而TiC的含量则显著减少。燃烧产物中Ti3AlC2的含量随添加TiAl量的增加而显著增多。  相似文献   

20.
利用2TiC-Ti-Al体系的原位放热反应制备TiC/Ti3AlC2复合材料。借助XRD和SEM分析不同合成温度对应产物的相组成和微观结构,并测量其密度和抗压强度。结果表明,随着合成温度的升高,Ti3AlC2含量减小,TiC杂质相含量增大,层状或板状Ti3AlC2组织减少,大颗粒状TiC显著增多。经1350℃烧结后,合成产物中Ti3AlC2含量相对较高,其密度和抗压强度达4.03g/cm3和111.29MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号