首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
为提高聚氨酯泡沫(PUF)的疏水性能,首先采用十六烷基三甲氧基硅烷(HDTMS)对花生壳粉末(PSP)进行改性,得到疏水改性花生壳粉末(H-PSP)。水接触角测试结果表明,改性后H-PSP的水接触角由PSP的0°提高至145.2°。然后采用预聚体法制备了PUF负载H-PSP复合材料(H-PSP-PUF-n,n为H-PSP占聚氨酯预聚体PPU的质量分数)。对H-PSP-PUF-n的结构和性能进行了表征与测试。结果表明,H-PSP的负载提高了泡沫材料的表面粗糙度和力学性能,H-PSP的最佳负载量为PPU质量的10%(H-PSP-PUF-10)。与PUF相比,H-PSP-PUF-10的静态水接触角达到142.4°,较PUF提高了50.4°。对二氯甲烷、石油醚、煤油、二甲苯、环己烷五种油品进行油水分离实验,结果表明,H-PSP-PUF-10对不同油品的吸油倍率在7~9 g/g,而且具有良好的油水选择性。经15次吸附-脱附循环后,H-PSP-PUF-10对各油品的吸油倍率在6.5~8.0 g/g,具有良好的循环利用性。  相似文献   

2.
以氨水为催化剂,乙醇为溶剂,通过顺序水解正硅酸乙酯(TEOS)、γ―氨丙基三乙氧基硅烷(KH550)和十二烷基三甲氧基硅烷(WD-10),“一锅”制得了疏水性较佳的二氧化硅微粉,而后采用简单的浸渍法将疏水二氧化硅负载于脱脂棉上制得疏水性棉纤维。通过激光粒度仪、傅里叶变换红外光谱仪、接触角测量仪和扫描电子显微镜对疏水二氧化硅粉体及改性棉纤维表面性质做了表征,发现负载疏水二氧化硅粉体的脱脂棉纤维由亲水性变成了表面接触角大于150°的超疏水性;选择环己烷作为油性溶剂,研究所得超疏水棉纤维对水、环己烷、环己烷/水乳液的吸附能力,实验结果表明该疏水棉纤维对环己烷及环己烷/水乳液具有较佳的选择吸附性,其对环己烷及环己烷/水乳液的初次吸附容量分别为28.33g/g和27.42g/g,经过20次重复使用,吸附容量仍然可达到19.18 g/g和18.45 g/g。经疏水改性的棉纤维对油性溶剂或含有油性溶剂的乳液具有较好的选择吸附性,而且可重复使用性较好,在含油废水处理领域具有一定的应用前景。  相似文献   

3.
以氨水为催化剂,乙醇为溶剂,通过顺序水解正硅酸乙酯(TEOS)、γ-氨丙基三乙氧基硅烷(KH-550)和十二烷基三甲氧基硅烷(WD-10),"一锅"制得了疏水性较佳的SiO_2微粉,而后采用简单的浸渍法将疏水SiO_2负载于脱脂棉上制得疏水性棉纤维。通过激光粒度仪、傅里叶变换红外光谱仪、接触角测量仪和扫描电子显微镜对疏水SiO_2粉体及改性棉纤维表面性质做了表征,发现负载疏水SiO_2粉体的脱脂棉纤维由亲水性变成了表面接触角大于150°的超疏水性;选择环己烷作为油性溶剂,研究所得超疏水棉纤维对水、环己烷、环己烷/水乳液的吸附能力,实验结果表明该疏水棉纤维对环己烷及环己烷/水乳液具有较佳的选择吸附性,其对环己烷及环己烷/水乳液的初次吸附容量分别为28.33g/g和27.42g/g,经过20次重复使用,吸附容量仍然可达到19.18g/g和18.45g/g。经疏水改性的棉纤维对油性溶剂或含有油性溶剂的乳液具有较好的选择吸附性,且可重复使用性较好,在含油废水处理领域具有一定的应用前景。  相似文献   

4.
以生物质基粗甘油为主要原料,采用一锅法合成粗甘油基多元醇,进一步发泡制备了聚氨酯泡沫材料。在此基础上,利用甲基三氯硅烷对泡沫材料进行疏水改性,制备出改性聚氨酯吸油材料。采用傅里叶红外光谱仪、扫描电镜和热重分析对改性前后泡沫的结构形貌、热稳定性和接触角进行表征,测试了改性聚氨酯吸油材料吸油性能。结果表明:经疏水改性后在泡沫表面合成了聚硅氧烷,水接触角由130°增大至140°,提高了吸油材料疏水性能。改性聚氨酯吸油材料对乙醇、甲醇、氯仿等8种有机物的吸附量范围为16.7~45.2 g/g。经循环使用50次后,吸油材料对柴油和大豆油的吸附量分别为最高吸附量的95.8%和97.6%,表现出优异的吸油性能。  相似文献   

5.
以氯铂酸为催化剂,通过五甲基二硅氧烷与端羟基聚丁二烯的硅氢加成反应,首次合成出以聚丁二烯为主链、侧链含硅氧烷的改性端羟基聚丁二烯。研究了硅氧烷改性的端羟基聚丁二烯作为聚氨酯软段对泡沫疏水性及吸油性能的影响。结果表明,硅氧烷接枝聚丁二烯作为聚氨酯软段可以有效地降低聚氨酯弹性体的表面能从而提高其疏水性,聚氨酯弹性体与水的接触角从未改性的84.6°提高到108°,硅氧烷接枝聚丁二烯制备的聚氨酯泡沫的与水的接触达到了158°;由于硅氧烷接枝聚丁二烯与甲苯、汽油和柴油的相容性较好,泡沫在吸附甲苯、汽油和柴油的过程中伴随着孔的填充的同时致使基体溶胀,从而可以有效地提高泡沫的吸附倍率。  相似文献   

6.
以氨水为催化剂,乙醇为溶剂,通过顺序水解正硅酸乙酯(TEOS)、γ―氨丙基三乙氧基硅烷(KH550)和十二烷基三甲氧基硅烷(WD-10),“一锅”制得了疏水性较佳的二氧化硅微粉,而后采用简单的浸渍法将疏水二氧化硅负载于脱脂棉上制得疏水性棉纤维。通过激光粒度仪、傅里叶变换红外光谱仪、接触角测量仪和扫描电子显微镜对疏水二氧化硅粉体及改性棉纤维表面性质做了表征,发现负载疏水二氧化硅粉体的脱脂棉纤维由亲水性变成了表面接触角大于150°的超疏水性;选择环己烷作为油性溶剂,研究所得超疏水棉纤维对水、环己烷、环己烷/水乳液的吸附能力,实验结果表明该疏水棉纤维对环己烷及环己烷/水乳液具有较佳的选择吸附性,其对环己烷及环己烷/水乳液的初次吸附容量分别为28.33g/g和27.42g/g,经过20次重复使用,吸附容量仍然可达到19.18 g/g和18.45 g/g。经疏水改性的棉纤维对油性溶剂或含有油性溶剂的乳液具有较好的选择吸附性,而且可重复使用性较好,在含油废水处理领域具有一定的应用前景。  相似文献   

7.
《应用化工》2022,(6):1321-1325
以柚子皮为基材,正硅酸乙酯(TEOS)、十二烷基三甲氧基硅烷(DTMS)制作前驱液,通过浸涂法制备复合疏水/亲脂材料。利用FTIR、SEM、接触角测量仪对该材料进行表征,并研究改性柚子皮吸油效果及油水分离能力。结果表明,SiO_2成功的附着在柚子皮纤维表面,并且DTMS水解产生的涂层成功的与柚子皮表面羟基缩合,使疏水涂层涂覆在柚子皮表面。改性柚子皮对植物油、煤油、苯、甲苯的最大吸附量为13. 3,9. 6,7. 7,7. 5 g/g。在植物油、煤油、苯、甲苯/水混合液中,其最大吸附量为12. 6,9. 5,7. 5,7. 3 g/g。同时改性柚子皮具有良好的油水分离能力与可重复利用性能。  相似文献   

8.
重金属和有机溶剂是水体中常见的污染物,十分有必要开发能够吸附重金属并同时分离有机溶剂的多功能复合材料。本论文以聚酯无纺布(NWF)为基底,经聚二甲基硅氧烷(PDMS)表面改性,进而采用原位生长方式将巯基化锆基金属有机骨架化合物(Zr-MOFs,简称PCN-222)负载在无纺布表面,制备了一种疏水的PDMS/PCN-222@NWF复合材料。在低表面能PDMS改性和原位生长PCN-222晶体所形成的粗糙表面共同作用下,其水接触角为141.7°。油水分离测试结果显示其分离效率最高可达98.6%,并且经过5次循环使用后,分离效率仍然可达94%以上。此外,由于无纺布表面负载有巯基化PCN-222颗粒,PDMS/PCN-222@NWF复合物可同时吸附水中的Hg2+,最高吸附量达294.4mg/g。  相似文献   

9.
先采用阳极氧化法在铜网表面原位生长Cu(OH)2纳米针来构建粗糙结构,再采用氟硅烷改性得到超疏水铜网,随后在超疏水铜网表面灌注乙二醇,形成液体门控型超滑铜网表面。利用接触角测量仪、扫描电子显微镜及X射线衍射仪分析了超疏水铜网的油接触角、水接触角、表面形貌和组成成分,并测试了灌注乙二醇的超滑铜网表面的油接触角。结果表明,超疏水铜网对水的接触角为150°,对二硫化碳的接触角为0°,对二硫化碳、石油醚和正己烷的初次油水分离效率都在90%以上,循环使用50次之后的油水分离效率仍在85%以上。灌注乙二醇的超滑铜网对上述3种有机液体的接触角均大于140°,对它们分别与乙二醇构成的油-油体系的分离效率均超过95%。  相似文献   

10.
以2,4-甲苯二异氰酸酯(TDI)、聚醚二元醇为主要原料制得-NCO封端的预聚体,再辅以适当的端基稳定剂得到相应的聚氨酯预聚物(PPU),并按一定比例和环氧树脂E-5l混合均匀;另用氨乙基氨丙基甲基二甲氧基硅烷、八甲基环四硅氧烷(D4)合成一系列不同相对分子质量的氨基聚硅氧烷,利用多元胺作固化剂,合成一系列氨基聚硅氧烷改性的聚氨酯/环氧共混聚合物。测试了材料的力学性能、吸水率,并用表面水接触角对其表面能进行表征,同时对材料进行了表面电子能谱(ESCA)分析。结果表明:氨基聚硅氧烷/聚氨酯/环氧共混聚合物具有良好的疏水性能和很低的表面能,同时具有较好的力学性能。  相似文献   

11.
Polyurethane consumption has been increasing in recent years, raising concerns about how to deal with the polymer waste. Post‐consumer rigid polyurethane foams or polyurethane foam scraps (PPU) ground into particles were utilized to strengthen mechanical properties of rigid polyurethane foam (PUF) and phenolic foam (PF). Viscosity of prepolymer with PUF was measured and PPU was well dispersed in prepolymer, as observed by optical microscope. Microstructures and morphologies of the reinforced foam were examined with scanning electron microscope (SEM) while cell diameter and density were measured by Scion Image software. Universal testing machine was employed to optimize compressive properties at various weight ratios of PPU. Both PUF and PF with 5 wt % PPU, respectively, exhibited considerable improvement in mechanical properties especially compressive property. The compressive modulus of PUF with 5 wt % PPU was 12.07 MPa, almost 20% higher than pure PUF while compressive strength of PF with 5 wt % PPU reached 0.48 MPa. The thermal stability of the reinforced foam was tested by thermal gravity analysis (TGA) and the result shows no obvious impact with PPU. The decomposition temperatures of PUF with PPU and PF with PPU were 280°C, because PPU has relatively weak thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39734.  相似文献   

12.
In order to enhance the oil–water separation properties of polyurethane foam (PFU), hydrophobic silica nanoparticles (H-SiO2 NPs) were firstly prepared by incorporating long alkyl chains into silica nanoparticles, and then, it was combined with PFU by in situ loading to fabricate a hydrophobic PFU (H-SiO2 NPs/PUF). When the loading amount of H-SiO2 NPs was 10%, the water contact angle of the modified foam H-SiO2 NPs/PUF-10 reached 147 ± 1°, which proved it was highly hydrophobic. The elongation at break of the foam was increased by 202%, which indicated that it had better resilience and recyclability. In addition, the total pore area and porosity were increased to 16.24 m2/g and 88.43% from 5.46 m2/g and 2.11%, which provided more storage space for adsorption. The oil–water separation experiment showed that the adsorption capacity for most light oils was 11–13 g/g, and that for dichloromethane was as high as 40.5 g/g. After 10 adsorption–desorption cycles, the adsorption capacity only decreased from 15.6 to 14.5 g/g, which was still 93% of the initial adsorption capacity. H-SiO2 NPs/PUF represents good adsorption capacity, recyclability, and recyclability, so it as a carrier has a potential application in the treatment of marine oil spills.  相似文献   

13.
为制备低成本且绿色环保的新型吸 油材料,本文以细菌纤维素(BC)为基质,脱碱木质素(DL)为疏水改性剂,通过低温浸渍法制备木质素复合细菌纤维素材料(BC-DL);考察了原料预处理、反应时间、温度以及物料比等对BC-DL疏水及吸油性能的影响。利用FTIR、XPS、SEM、BET、接触角仪对材料的化学结构及微观形貌进行表征。结果表明,与改性前相比,DL改性后BC的比表面积由33.15 m2/g提升至71.09 m2/g,水接触角由未改性BC的19.5°增大到116.8°。吸油实验结果显示,BC-DL对花生油、柴油、真空泵废油的吸油量(OCA)分别为34.8 g/g、33.7 g/g、34.6 g/g;在经过8次循环后,OCA保留在19.1 g/g、18.3 g/g和18.8 g/g,BC-DL对三种油品均有良好的吸附性能和循环利用性。  相似文献   

14.
《Ceramics International》2021,47(20):28400-28410
The separation of oil spillage from marine environments has been discussed as a global concern. Recyclable superhydrophobic magnetic particles with micro-nano structures have been considered as a potential providing a safe, practical, and easy method for removing the oil from oil-water. In this research, the hydrophobicity of magnetic particles was enhanced to achieve the maximum adsorption capacity. For this purpose, reacted carbonyl iron (CI) with glucose was reacted with stearic acid under different condition of temperature, time, and concentration. Analytical tests were performed to confirm the reaction of stearic acid with CI@glucose. The prickly shape created on the surfaces of magnetic particles led to achieving the maximum superhydrophobicity. In this connection, the optimized superhydrophobic particles based on the maximum obtained water contact angle (WCA) of 169° at 75 °C, and 3.5 h and 10% concentration of stearic acid were selected for the oil-water separation. The results revealed that the superhydrophobic particles had acceptable stability within pH range of 2–12. The adsorption capacity of the modified particles for hexane, silicone oil, gasoline, and kerosene was 4.1, 2.5, 3.1, and 3.7 g/g, respectively, with a high adsorption efficiency ( > 99.7%) in the oil-water mixture. After ten cycles of using these particles, the adsorption capacity range was 2 to 4 g/g regardless of the number of recycling times, and no significant change was observed in the contact angle.  相似文献   

15.
This article introduces the preparation of rigid polyurethane foam (PUF) and studies the effect of various mass percentages of sodium polyacrylate (PAAS, microsized) on PUF hydrophilicity. The characterization of PUF (with 0–5.5 wt % PAAS) was conducted via scanning electron microscopy, contact angle analysis, differential scanning calorimetry, and pore size distribution. All modified foams showed an improvement in their water sorption and water maintenance capacities, and the PU foam content of 5.5 wt % PAAS showed a water absorption of 891%, and the water retention performance was 408% (96 h) compared to the pure PU foam. Through contact angle measurements, the relationship between the hydrophilicity of the modified foams and PAAS content was investigated. The compression strength of the samples was also tested. When the PAAS is 2.6 wt %, the compression strength of the composites decreased about 50% compared with the pure PU foam. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46702.  相似文献   

16.
以甲苯二异氰酸酯(TDI)、聚乙二醇(PEG)和N-甲基二乙醇胺(MDEA)等为主要原料,以蓖麻油(C.O.)作为部分聚醚多元醇的替代物,采用PU(聚氨酯)预聚体法制备出具有一定交联结构的亲水性阳离子型WPU(水性聚氨酯)乳液。结果表明:当体系交联度较低时,C.O.对WPU的改性效果不明显;当体系交联度较高时,WPU乳液稳定性及其胶膜耐水性等均随C.O.比例增加而提高;当n(PEG)∶n(C.O.)=7∶3时,WPU胶膜的耐水性(吸水率约6%)相对最好,其静态接触角(约82°)相对最大。  相似文献   

17.
为研发绿色环保、制备工艺简单的油水分离材料,以单宁酸(TA)和聚乙二醇(PEG)为改性剂,聚偏氟乙烯(PVDF)膜为基底,通过简单浸渍法,制备了超亲水复合膜(TAPE膜)。采用SEM、AFM、FTIR、XPS和接触角测定仪对TAPE膜进行了表征和分析,并考察了TAPE膜的油水分离性能、耐磨性能和稳定性。结果表明,TAPE膜具有多孔微纳米粗糙结构,当TA含量为蒸馏水质量的1.75%时,该膜的水接触角和水下油接触角分别为0°和156°,表现出超亲水性和水下超疏油性。在0.09 MPa工作压力下,TAPE膜分离水包油乳液的膜通量为1146.4 L/(m2·h),是原始PVDF膜的30倍,该膜对油水混合液和水包油乳液的分离效率均可达99.9%。此外,TAPE膜具有良好的稳定性,膜表面经砂纸(320目)磨损(100 g载重)25次后水接触角仍高达152°。  相似文献   

18.
Poor flame retardancy of polyurethane foam (PUF) limits its practical application in many fields. Here, flame‐retardant performance of PUF is improved by a simple dip‐coating method. Halloysite nanotube (HNT) coating can be uniformly bonded to PUF surfaces via hydrogen‐bonding interactions, which is confirmed by element mapping and X‐ray photoelectron spectra. Density and mechanical properties of PUF increase with the concentration of HNT suspension, while porosity of the foam decreases with HNT loading. Weight ratio of HNTs to PUF in the composite can be achieved as high as 65.2%. Surfaces of PUF transfer from hydrophobic to super‐hydrophilic after HNT coating, and the water contact angle decreases from 116° to 0° after HNT coating. As a result, methylene blue adsorption capacity of HNTs‐coated PUF increases from 0.02 to 0.15 mg g?1, and adsorption efficiency can reach 98% after 10 s. HNT coating can prevent PUF from burning and dripping, which suggests that flame‐retardant performance of PUF is significantly improved by HNTs. This work establishes a general procedure for improving flame retardancy and dye absorbency of polymer materials by simple dip‐coating of environmental‐friendly clay nanotubes, which shows great potential in high‐performance polymer and functional composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号