首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 73 毫秒
1.
纳米改性氢氧化铝与包覆红磷协效阻燃PBT的研究   总被引:2,自引:0,他引:2  
以纳米改性氢氧化铝(CG-ATH)与包覆红磷(RP)为无卤阻燃剂,研究其对聚对苯二甲酸丁二醇酯(PBT)的阻燃性能和力学性能的影响。首先探讨了包覆红磷的添加量对PBT阻燃性能和力学性能的影响,然后固定包覆红磷用量,考察纳米CG-ATH的添加量对PBT/RP复合体系的阻燃性能和力学性能的影响。实验结果表明,纳米CG-ATH和包覆红磷能协效阻燃PBT复合体系,在包覆红磷添加量为10phr,纳米CG-ATH为20 phr时,PBT复合材料的氧指数从21%提高到30%,达到V-0级;复合材料的拉伸强度为57.0 M Pa,冲击强度为3.03 kJ/m2,断裂伸长率为5.79%,表明该PBT复合体系具有优良的阻燃性能和力学性能。  相似文献   

2.
3.
采用原位一步法合成铜铝类水滑石(CuAl-LDHs),通过控制铝酸钠/聚磷酸铵(NaAlO2/APP)的质量比(0.82~3.28)合成CuAl-LDHs-APP。采用XRD、FTIR、SEM和TG对所制备的CuAl-LDHs及CuAl-LDHs-APP进行表征。采用极限氧指数(LOI)、垂直燃烧(UL-94)测试、弯曲及拉伸试验等考察了CuAl-LDHs/聚丙烯(PP)及CuAl-LDHs-APP/PP复合材料的阻燃性能及力学性能。SEM 观察表明:LDHs结构为片状,随着NaAlO2与APP质量比的减小,CuAl-LDHs-APP颗粒粒径相应减小,当NaAlO2与APP的质量比为0.82时,CuAl-LDHs-APP颗粒粒径达到20 nm左右,比表面积为183.5 m2/g。TG分析表明:CuAl-LDHs-APP在高温下有较好的热稳定性。当PP中加入质量分数为20%的CuAl-LDHs及CuAl-LDHs-APP时,LDHs/PP复合材料表面形成炭层;当NaAlO2与APP质量比不大于1.64时,CuAl-LDHs-APP的添加可抑制PP燃烧时产生的熔滴现象;与CuAl-LDHs/PP复合材料相比,CuAl-LDHs-APP/PP复合材料具有更好的阻燃性能和力学性能;与PP材料相比,CuAl-LDHs-APP/PP复合材料的弯曲强度和拉伸强度等力学性能的下降也不明显。   相似文献   

4.
聚丙烯的阻燃改性   总被引:1,自引:0,他引:1  
  相似文献   

5.
近些年,聚合物纳米填充阻燃材料吸引了广泛的关注,和传统聚合物材料相比,添加纳米材料后使聚合物纳米材料的力学性能和阻燃性能显著改善。高模量、较强的阻隔作用、较高热稳定性、较好的力学性能等显著特征,使聚合物纳米材料具有广泛的应用前景。目前文献关于纳米阻燃聚合物材料的报道主要以层状硅酸盐纳米材料为主。  相似文献   

6.
以聚磷酸铵(APP)为芯材、聚酰亚胺(PI)为囊材,通过低温喷雾干燥法制备微胶囊化改性APP阻燃剂。扫描电镜和红外光谱分析表明,改性后的APP分散性得到改善,并且PI较好地包覆在APP表面。将改性APP按照一定比例加入到PP树脂中制得薄膜,结果表明,改性APP的添加有提改善了薄膜的阻燃性能,极限氧指数比空白组最高提升了42.2%,UL-94达到V-0级,且热释放速率明显减缓,残炭量显著提升。此外,薄膜的机械性能、微观结构均未发生较大改变,可适用于物品的阻燃包装。  相似文献   

7.
聚磷酸铵的改性及其对聚丙烯阻燃特性的研究   总被引:2,自引:0,他引:2  
探讨了三聚氰胺(MEL)改性聚磷酸铵(APP)过程中APP本身的化学及物理变化。发现在改性反应条件下,APP聚合度略有增加,晶型由I型变为Ⅰ、Ⅱ型混合物,导致改性产物(MAPP)的热稳定性大大提高,其失重特征更符合阻燃要求。将其与季戊四醇组成膨胀型阻燃剂(IFR)用于聚丙烯阻燃特性研究,结果表明添加25%时即具有良好的阻燃效果。同时热分析还证明,与简单掺混型相比,其失重速率峰值更小,500℃时的残余量更高。  相似文献   

8.
膨胀石墨聚磷酸铵复合阻燃聚丙烯初探   总被引:5,自引:0,他引:5  
以国产膨胀石墨为主阻燃剂,聚磷酸铵为协效剂,讨论了膨胀石墨复合阻燃剂两组分不同配比对阻燃聚丙烯燃烧性能和力学性能的影响。当膨胀石墨复合阻燃剂用量为30份、石墨与聚磷酸铵比为2:1时,材料的氧指数为21.7,拉伸强度为32,4MPa,缺口冲击强度为0.51KJ/m^2,力学性能和阻燃性能指标较好,材料的综合性能最佳,复合阻燃剂两组分在此配比时具有明显的协同效应。阻燃剂用量超过30份后。材料的拉伸强度快速下降,失去使用价值。  相似文献   

9.
类水滑石的制备与改性及其在聚丙烯阻燃中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用共沉淀法制备了镁铝类水滑石(LDHs)前驱体,加入少量聚磷酸铵(APP)制得APP-LDHs,探讨了不同质量分数APP对LDHs晶体生长的影响;当APP在LDHs前驱浆液中添加量为0.8wt%时,将APP-LDHs与季戊四醇(PER)、硅烷偶联剂KH-550进行球磨混合,制备插层包覆改性的LDHs;通过XRD、FTIR、SEM和TG等对改性前后的LDHs进行了表征;采用极限氧指数(LOI)、垂直燃烧测试(UL-94)、缺口冲击和弯曲实验等方法研究了LDHs改性前后LDHs/聚丙烯(PP)复合材料的阻燃性能及力学性能的差异。研究结果表明:APP的加入,未显著影响LDHs的层板生长,但其层板堆叠受到抑制;SEM观察表明,所制备的LDHs为片状,且经插层包覆改性后的LDHs粉体形貌较为规整,颗粒粒径为100~250 nm;改性LDHs在较高温度下的热稳定性显著优于未改性的LDHs;当PP中加入质量分数为20%的LDHs及改性LDHs时,可抑制PP燃烧时产生的熔滴,并促使LDHs/PP复合材料表面形成炭层;改性LDHs/PP复合材料具有更好的阻燃性能,且其冲击强度、弯曲强度等力学性能下降不明显。  相似文献   

10.
聚磷酸铵的微胶囊化与阻燃应用   总被引:8,自引:0,他引:8  
研究了采用原位聚合法制备聚磷酸铵(APP)微胶囊的工艺条件及其应用于聚丙烯(PP)中的阻燃性能。分析表明,经微胶囊处理后,APP的溶解度降低,热稳定性提高,并应用扫描电镜测试了微胶囊APP的表面形态。阻燃性能测定表明在PP中,无论单独使用还是与其他阻燃剂复配使用,微胶囊APP的阻燃效果都好于普通APP。  相似文献   

11.
赵盼盼  李丽萍 《材料导报》2017,31(6):115-119
以聚磷酸铵(APP)和次磷酸铝(AHP)为阻燃剂,马来酸酐接枝聚丙烯(MA-g-PP)为界面相容剂,通过熔融共混制备了聚丙烯(PP)/木粉(WF)复合材料。采用UL-94垂直燃烧、氧指数(LOI)、热重分析(TGA)探究了阻燃PP/WF复合材料的阻燃性和热分解过程。实验表明,当APP与AHP质量比为9∶1时,LOI值为28.3%,垂直燃烧UL-94达到V-0级。TGA和DTG测试表明,APP与AHP复配能降低木纤维的分解温度,使复合材料提前成炭,达到阻燃作用;加入APP与AHP的PP/WF复合材料的成炭率提高了141%,其高温稳定性也得到提高。通过SEM观察到,当m(APP)∶m(AHP)=9∶1时,木塑复合材料可形成致密的炭层,具有更好的隔热、隔氧作用,从而提高了阻燃性。结果表明在聚磷酸铵中加入少量的协效剂次磷酸铝可明显提高PP/WF复合材料的阻燃性。  相似文献   

12.
以七水硫酸镁和氢氧化钠为主要原料,利用水热法制备了碱式硫酸镁晶须,采用熔融共混法制备了聚丙烯/多聚磷酸铵/季戊四醇/碱式硫酸镁晶须复合材料。通过氧指数测试(LOI)、垂直燃烧测试(UL-94)、热失重分析评价了复合材料的阻燃性能和热稳定性,采用扫描电镜、能谱仪表征了残炭的形貌结构,发现碱式硫酸镁晶须对膨胀阻燃聚丙烯具有显著的协效作用。添加1%的碱式硫酸镁晶须,膨胀阻燃体系的LOI由29.90提高至38.39,提高了28.4%;UL-94等级从NR提高到V-0;残炭致密性显著增强,炭层表面C/P摩尔比增加,且出现元素Mg;弯曲强度从38.83 MPa增加至40.25MPa。  相似文献   

13.
含硅化合物与膨胀阻燃剂协同阻燃聚丙烯   总被引:3,自引:0,他引:3  
采用聚磷酸铵(APP)与季戊四醇(PER)复合膨胀阻燃剂(IFR)阻燃聚丙烯,研究了不同含硅物质——硅胶(SG)、硅酮(GM)以及硅晶(SW)纤维对IFR阻燃PP性能的影响,并通过LOI、UL-94、TGA对材料阻燃性能进行了表征。结果表明,三种物质与IFR都存在一定的协同效应。然而,硅胶与IFR的协同效应最好,在IFR含量为25%时,添加2%的硅胶,材料氧指数由29提高至35,UL-94也提高至V-0级,材料的高温热稳定性也得到了极大提高,并且能够生成结构更加致密的炭层。  相似文献   

14.
以高熔指聚丙烯(HM-PP)粉料为基体,通过双螺杆挤出机将聚磷酸铵(APP)、三嗪成炭发泡剂(CFA)和纳米二氧化硅(Si O2)与聚丙烯进行捏合,经挤出、冷却及切粒后,制备三嗪膨胀阻燃母粒,同时研究了膨胀阻燃剂与聚丙烯基体的不同质量比对母粒加工性能的影响。将制备的阻燃母粒以一定的添加量与聚丙烯(M02)混合后直接注塑,制备阻燃聚丙烯材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能,通过拉伸、弯曲和冲击性能的测试研究了材料的力学性能,通过扫描电镜对材料截面的测试研究了阻燃剂在材料中的分散性及相容性,同时还研究了阻燃PP材料的耐水性能。结果表明,在阻燃剂添加量为65%的时候,阻燃母粒具有很好的加工性能,加工过程中无断条现象。当母粒的添加量为33.8%(阻燃剂含量为22%)时,材料通过UL-94 V-0级,LOI值达到了34.3%,表现出很好的阻燃效果。与单独添加膨胀阻燃剂的阻燃PP材料相比,阻燃母粒与聚丙烯树脂具有更好的相容性且在树脂中分散均匀,阻燃母粒的加入提高了材料的力学性能,同时材料的耐水性能也得到了很好的提高,材料在耐水测试后依然能保持很好的阻燃性能。  相似文献   

15.
微胶囊化聚磷酸铵在EVA中的膨胀型阻燃作用   总被引:2,自引:0,他引:2  
采用原位聚合方法制备出三聚氰胺-甲醛树脂(密胺树脂)微胶囊化聚磷酸铵(MCAPP),并用电子能谱等手段对其表征。结果表明,聚磷酸铵经过微胶囊化后在水中溶解度大大降低。与APP相比,MCAPP在EVA中的阻燃性能有较大提高。当MCAPP与季戊四醇(PER)或双季戊四醇(DPER)以一定比例复配时,其EVA/MCAPP/PER或EVA/MCAPP/DPER复合材料的氧指数进一步提高,而且该三元复合材料的垂直燃烧性能能够达到UL-94 V-0级。TG实验发现,MCAPP的初始分解温度与APP的差不多;EVA/MCAPP复合材料的热稳定性要比EVA/APP复合材料的热稳定性有所提高。  相似文献   

16.
采用原位聚合法制备了以环氧树脂(EP)为壁材,聚磷酸铵(APP)为芯材的微胶囊阻燃剂(MCAPP)。研究了不同含量的壁材对MCAPP溶解度的影响,结果发现,与未包覆的APP相比,在25℃和80℃条件下,MCAPP的溶解度都有较大幅度降低。采用傅立叶变换红外光谱(FT-IR)和透射电镜(TEM)对MCAPP进行了组成和结构表征,初步证实EP已包覆在APP颗粒表面。激光粒度的研究表明,MCAPP粒径分布变窄,平均粒径有所降低。此外,还采用热失重方法研究了APP以及MCAPP的热稳定性。  相似文献   

17.
针对难以同时获得具有高阻燃性和高韧性聚乳酸(PLA)的现状,文中将聚磷酸铵和植酸钙复配形成膨胀阻燃剂加入到通过动态硫化法制备的韧性聚乳酸/不饱和聚酯共混物中(TPLA),详细研究了二者配比对TPLA阻燃性能、燃烧行为、热性能以及力学性能的影响。热重分析表明,该膨胀阻燃剂的引入并没有破坏TPLA的热稳定性,反而提高了其高温残炭量。极限氧指数(LOI)、垂直燃烧和锥形量热测试结果显示,该复配阻燃剂对TPLA表现出优异的阻燃性能,添加质量分数10%聚磷酸铵和5%植酸钙后,TPLA可以通过UL-94 V-0级,LOI达到27%;与纯PLA相比,改性后TPLA的峰值热释放速率和总热释放分别下降57.5%和69.5%。力学测试结果表明,阻燃TPLA的断裂伸长率和缺口冲击强度相比聚乳酸有大幅上升,分别为聚乳酸的7.6倍和6.5倍。  相似文献   

18.
环氧树脂/聚磷酸铵复合材料的阻燃性能与热降解行为   总被引:1,自引:0,他引:1  
利用环氧树脂(EP)成炭能力,引入聚磷酸铵(APP)以提高其阻燃性能。当APP质量分数为9%时,EP/APP氧指数达30.5%,垂直燃烧性能通过V-0级。相比EP,EP/APP的热释放峰值与总热释放均有所下降。此外,利用热失重-红外联用设备研究了EP以及EP/APP的热降解行为并解释相关机理:EP在高温下会释放CO、甲醇等易燃性气体,剧烈燃烧并放出大量的热;APP在低温阶段的热裂解产物会催化EP的降解,但在高温下EP/APP却有热稳定性优异的炭层形成,在火灾中此炭层会覆盖在基体表面保护下部材料以免其遭到进一步的破坏。  相似文献   

19.
Epoxy resin (EP) has been widely used in coatings, adhesives, and composites. However, EP is flammable with severe smoke production. The addition of flame retardant fillers into EP can effectively improve its flame retardancy, but often brings mechanical reduction to EP. Herein, a high-effective boron-containing flame-retardant (2-phenyl-1,3,2-dioxaborolan-4-yl) methanamine ammonium polyphosphate (PBMA-APP) is synthesized and introduced into EP to improve the fire resistance and the impact toughness. With the addition of 6% PBMA-APP, the fire performance of EP is significantly improved. The Underwriters Laboratories-94 rating is increased to V-0, the total heat release and total smoke production (TSP) are reduced by 30% and 32%, respectively. It is proposed that the synergistic effect among B, N, and P in PBMA-APP promoted the char formation of EP. The addition of 6% PBMA-APP into EP causes little effect on tensile strength but increases the impact strength of EP to 11.2 kJ m−2. This work has proposed a possible strategy to develop a high-efficient flame retardant for thermosetting resins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号