首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
As an effort to develop a new, effective, nontoxic X-ray contrast agent, the concentrated colloids of silica-encapsulated gold nanoparticles (Au@SiO2 NPs) were fabricated and their colloidal stability, cytotoxicity, and X-ray absorption were investigated. The concentrated colloidal NPs were manufactured by forming a 4 nm-thick silica shell on the surface of each Au NP with 15 nm diameter, followed by enrichment to [Au] = 100 mM. They were very stable in water: the NPs were well separated each other without forming agglomerates and their optical property was very similar to that before enrichment. The colloidal stability of the NPs in biological environment was strongly dependent on their previous morphology in water. The NPs with minor shell damage were stable in phosphate buffered saline (PBS) solution: both in water and in PBS solution, they showed very similar morphology and optical property. However, the NPs with profound shell damage formed big agglomerates in PBS solution, resulting in the red-shift and broadening of the Au surface plasmon resonance peak. Cell viability and proliferation assessments revealed the biocompatibility of the Au@SiO2 NPs: no apparent cytotoxicity was observed even at 100 ppm NPs. The concentrated colloidal NPs showed very strong X-ray absorption. Their relative X-ray transmittance to water was comparable to that of a commercial agent. Considering these, the concentrated colloids of the Au@SiO2 NPs are suitable for an X-ray contrast agent.  相似文献   

2.
P.K. Kuiri  J. Ghatak 《Vacuum》2010,85(2):135-138
SnO2 nanoparticles (NPs) of average diameter of ∼10.5 nm, synthesized in SiO2 using Sn ions implantation combined with thermal annealing, were irradiated with 1.5 MeV Au2+ ions at room temperature. The NP structure was studied as a function of ion fluence by transmission electron microscopy and micro-Raman spectroscopy. Prior to ion irradiation, SnO2 NPs have been found to exhibit the rutile crystal structure. Upon irradiation, amorphization in the nanocrystals has been seen to increase with increase in ion fluence. In particular, at a fluence of 1 × 1014 ions cm−2 we argue for the presence of an amorphous SnO2 phase. Beyond this fluence, the NPs have been found to dissolve in the matrix. The observed results are explained in the frame work of ion irradiation induced defects production in the NPs as well as in the NP/matrix interface.  相似文献   

3.
Increasing use of zinc oxide nanoparticles (ZnO NP) in consumer products may enhance its release into the environment. Phytotoxicity study is important to understand its possible environmental impact. Allium cepa (Onion bulb) is the best model organism to study genetic toxicology of nanoparticles. Here we have reported cytogenetic and genotoxic effects of ZnO NPs on the root cells of A. cepa. The effects of ZnO NPs on the mitotic index (MI), micronuclei index (MN index), chromosomal aberration index, and lipid peroxidation were determined through the hydroponic culturing of A. cepa. A. cepa roots were treated with the dispersions of ZnO NPs at four different concentrations (25, 50, 75, and 100 μg ml(-1)). With the increasing concentrations of ZnO NPs MI decreased with the increase of pycnotic cells, on the other hand MN and chromosomal aberration index increased. The frequency of micronucleated cells was higher in ZnO NPs treated cells as compared to control (deionized distilled water). The number of cells in each mitotic phase changed upon ZnO NPs treatment. The effect of ZnO NPs on lipid peroxidation as examined by measuring TBARS concentration was evident at all the concentrations compared to bulk ZnO. The TEM image showed internalization of ZnO NPs like particles. SEM image of treated A. cepa demonstrated that the internalized nanoparticles agglomerated depending on the physico-chemical environment inside the cell. Our results demonstrated that ZnO NPs can be a clastogenic/genotoxic and cytotoxic agent. In conclusion, the A. cepa cytogenetic test can be used for the genotoxicity monitoring of novel nanomaterials like ZnO NPs, which is used in many consumer products.  相似文献   

4.
A facile, cost-effective, and general solution-based “bottom-up” method for nanopatterning dense arrays of colloidal Au nanoparticles (NPs) has been developed. The organization of the NPs has been successfully achieved onto a microphase-separated poly(styrene-block-ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin film which acts as structural template. The NP assembly process occurs by incubating the BCP films in dispersions of the ex situ synthesized Au NPs, not requiring any chemical pre-treatment or activation step of the copolymer surface, and has demonstrated to be distinctively controlled by multiple, cooperative, and selective hydrogen bonding interactions between hydroxyl functionalities of the capping molecules coating the Au NP surface and the hydrophilic PEO block. The effect of incubation time and concentration of NPs on the selectivity of the assembly has been investigated by atomic force and scanning electron microscopy. The results show that the BCP pattern is preserved after decoration with the Au NPs. The fabricated nanopatterns are good candidates for nanostructure integration in sensing and optoelectronic applications, as well as in memory devices and photonic systems. Moreover, the proposed immobilization protocol represents a model system that can be extended to other NPs having different compositions and surface chemistries.  相似文献   

5.

Nanoparticle (NP) colloidal stability plays a crucial role in biomedical application not only for human and environmental safety but also for NP efficiency and functionality. NP agglomeration is considered as a possible process in monodispersed NP colloidal solutions, which drastically affects colloidal stability. This process is triggered by changes in the physicochemical properties of the surrounding media, such as ionic strength (IS), pH value, or presence of biomolecules. Despite different available characterization methods for nanoparticles (NPs), there is a lack of information about the underlying mechanisms at the early stage of dynamic behaviors, namely changing in NP size distribution and structure while placing them from a stable colloidal solution to a new media like biological fluids. In this study, an advanced in situ approach is presented that combines small angle X-ray scattering (SAXS) and microfluidics, allowing label-free, direct, time-resolved, and dynamic observations of the early stage of NP interaction/agglomeration initiated by environmental changes. It is shown for silica NPs that the presence of protein in the media enormously accelerates the NP agglomeration process compared to respective changes in IS and pH. High IS results in a staring agglomeration process after 40 min, though, in case of protein presence in media, this time decreased enormously to 48 s. These time scales show that this method is sensitive and precise in depicting the dynamics of fast and slow NP interactions in colloidal conditions and therefore supports understanding the colloidal stability of NPs in various media concluding in safe and efficient NP designing for various applications.

  相似文献   

6.
A simple synthesis of polymer core-dendrimer shell nanoparticles (NPs) in the 15-20-nm-diameter range is presented. Amine-terminated polypropyleneimine (PPI) dendrimers DAB-dendri-(NH(2))(4) and DAB-dendri-(NH(2))(16) (DAB4 and DAB16) are covalently attached to the surface of primary polystyrene-based NPs bearing reactive chlorobenzyl groups produced by microemulsion polymerization in the presence of a cationic surfactant. The grafting readily proceeds under mild conditions and leads to translucent aqueous suspensions of core-shell-type NPs with a high density of peripheral amine groups that have been characterized relative to their size and chemical composition. The dendritic shell acts as a protective ionizable outer layer and provides an improvement of the colloidal stability in neutral and acidic media. The metal-binding capacity of the PPI dendrimers is retained, and spectrophotometric titrations show that the dendrimer-grafted NPs can trap a large number of Cu(2+) ions (more than 900 Cu per NP-DAB16). These properties make them potentially valuable templates for the elaboration of hybrid nanomaterials. The reactivity of the external amine groups is used to link covalently azobenzene chromophores (disperse Red 1 residues) through aza-Michael addition in aqueous suspension. This simple method gives access to colored NPs with high dye contents in the outer layer (up to 1000-1500 dye molecules per NP), which indicates that dendrimer-functionalized NPs are valuable building blocks for the construction of multifunctional nanomaterials.  相似文献   

7.
The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 1016 ions/cm2 become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate.  相似文献   

8.
This study explores the potential antimicrobial mechanisms of commercial silver nanoparticles (Ag NPs) in the environmental bacterium, Pseudomonas chlororaphis O6. The 10nm size NPs aggregated in water, as demonstrated by atomic force microscopy. Solubility of the NPs at 10mg/L was 0.28 mg/L (pH 6) and 2.3mg/L (pH 7); release from 10mg/L bulk Ag was below detection. The NPs eliminated cell culturability at 3mg/L, whereas no effect was observed at 10mg/L bulk Ag. Zeta potential measurements revealed that the NPs were negatively charged; unlike Ag ions, their addition to the negatively charged cells did not change cell charge at pH 6, but showed a trend to reduce cell charge at pH 7. Isolated extracellular polymeric substances (EPS) from PcO6 was polydisperse, with negative charge that was neutralized by Ag ions, but not by the NPs. Addition of EPS eliminated Ag NP's toxicity in cells lacking EPS. Intracellular accumulation of OH was not detected in NP-treated cells; however, the use of scavengers suggested the NPs caused extracellular H(2)O(2) production. No evidence was found for loss of membrane integrity upon treatment with the NPs. Our findings indicate that growth of environmental bacteria could be impaired by Ag NPs, depending on the extent of EPS production.  相似文献   

9.
The results of a resonant Raman scattering (RRS) study of polymer-stabilized colloidal CdSe nanoparticles (NPs) are reported. The size-selective nature of the RRS is demonstrated by analysing the NP ensembles with different average size [Formula: see text] and size distribution Δd using a set of excitation wavelengths. The effect of size selection on the estimation of [Formula: see text] and Δd values from the RRS spectra is discussed, as well as some peculiarities of RRS on surface optical phonons. From the experimentally observed small variation of the I(2LO)/I(LO) ratio for 2-5?nm NPs a minor effect of [Formula: see text] on the electron-phonon coupling strength in this [Formula: see text] range is supposed.  相似文献   

10.
The chemically synthesized colloidal gamma-Fe2O3 and FePt nanoparticles (NPs), with the diameter of approximately 10 nm and approximately 4 nm, respectively, adsorbed and assembled on the surface of carbon nanotubes (CNTs) by dip-coating process, through van der Waals interaction between NP and CNT. Repeating the steps of dip-coating and removing the surfactants from NPs significantly increased the amount of NPs as forming multilayers on the CNT. In addition, the electrochemical activities of FePt/CNTs for methanol oxidation were investigated for the potential application as catalysts of direct methanol fuel cells.  相似文献   

11.
Recently the use of medicinal plants potential in the production of nanoparticles has received serious attention. Here, the main component of Camellia sinensis L. (green tea) extract was detected by spectroscopy and the optimal conditions were determined for their performance in green synthesis of silver nanoparticles at room temperature. Epigallocatechin gallate was identified as the dominant component in the extract as determined by spectroscopy, and it was established that its oxidation was a function of the solution pH. Transmission electron microscopy, dynamic light scattering, and visible absorption spectroscopy (UV‐Vis) confirmed the reduction in silver ions to silver nanoparticles (Ag NPs). Controlling over Ag NPs shape and narrow size distribution was achieved with 10 ml green tea leaf extract solution and in different reaction pH. Spherical colloidal Ag NPs with well‐defined hydrodynamic diameters (with average hydrodynamic size of 27.9–50.2 nm) were produced. Silver nitrate concentrations used in this study were lower than that of reported in similar works, and synthesis efficiency was also higher. Nanoparticles were perfectly spherical and their uniformity, compared to similar studies, was much higher. These NPs showed higher degree of stability and were aqueously stable for >10 months in dark glasses at 4°C.Inspec keywords: hydrodynamics, nanoparticles, particle size, pH, visible spectra, ultraviolet spectra, reduction (chemical), transmission electron microscopy, silver, microorganisms, nanofabrication, colloids, biomedical materials, nanomedicine, drug delivery systemsOther keywords: transmission electron microscopy, dynamic light scattering, visible absorption spectroscopy, silver ions, narrow size distribution, silver nitrate concentrations, green synthesis, medicinal plants, solution pH, green tea leaf, hydrodynamic size, silver nanoparticles, Camellia sinensis L, drug delivery, reduction component, epigallocatechin gallate, UV‐visible spectra, hydrodynamic diameters, spherical colloidal Ag NPs, temperature 4.0 degC, Ag  相似文献   

12.
Metal nanoparticle (NP) sintering is a prime cause of catalyst degradation, limiting its economic lifetime and viability. To date, sintering phenomena are interrogated either at the bulk scale to probe averaged NP properties or at the level of individual NPs to visualize atomic motion. Yet, “mesoscale” strategies which bridge these worlds can chart NP populations at intermediate length scales but remain elusive due to characterization challenges. Here, a multi-pronged approach is developed to provide complementary information on Pt NP sintering covering multiple length scales. High-resolution scanning electron microscopy (HRSEM) and Monte Carlo simulation show that the size evolution of individual NPs depends on the number of coalescence events they undergo during their lifetime. In its turn, the probability of coalescence is strongly dependent on the NP's mesoscale environment, where local population heterogeneities generate NP-rich “hotspots” and NP-free zones during sintering. Surprisingly, advanced in situ synchrotron X-ray diffraction shows that not all NPs within the small NP sub-population are equally prone to sintering, depending on their crystallographic orientation on the support surface. The demonstrated approach shows that mesoscale heterogeneities in the NP population drive sintering and mitigation strategies demand their maximal elimination via advanced catalyst synthesis strategies.  相似文献   

13.
We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C).  相似文献   

14.
An in situ optical microspectroscopy investigation of the growth and oxidation of silver nanoparticles (NPs) embedded in SiO2 thin films deposited on soda-lime glass has been conducted in real time during thermal processing in air. Variation of Ag NP size is followed by fitting of surface plasmon resonance (SPR) with spectra calculated by Mie theory, and analysed concurrently with the time evolution of SPR peak intensity. The NP transformations appeared to be temperature and time dependent. Silver NPs were indicated to grow at relatively high temperatures (e.g. 600 °C) due to Ostwald ripening, followed by a plateau and a gradual decrease in size resulting in SPR vanishing due to oxidation. The three phases were well separated in time. Oxidation appeared dominant at lower temperatures (e.g. 400 °C) as indicated by a continuous decrease in Ag particle size. The product of Ag NP oxidation was revealed by photoluminescence spectroscopy as single Ag+ ions. Furthermore, the data indicated that: (i) Ag+ ions are formed during heat treatment under an Ag/Ag+ redox equilibrium; (ii) the ions diffuse from the SiO2 matrix towards the soda-lime substrate where they stabilize; and (iii) the continuous removal of these ions from the matrix is necessary in order for the equilibrium to be displaced towards oxidation.  相似文献   

15.
Nanoparticle (NP) determination has recently gained considerable interest since a growing number of engineered NPs are being used in commercial products. As a result, their potential to enter the environment and biological systems is increasing. In this study, we report on the development of a hyphenated analytical technique for the detection and characterization of metal-containing NPs, i.e., their metal mass fraction, size, and number concentration. Hydrodynamic chromatography (HDC), suitable for sizing NPs within the range of 5 to 300 nm, was coupled online to inductively coupled plasma mass spectrometry (ICPMS), providing for an extremely selective and sensitive analytical tool for the detection of NPs. However, a serious drawback when operating the ICPMS in its conventional mode is that it does not provide data regarding NP number concentrations and, thus, any information about the metal mass fraction of individual NPs. To address this limitation, we developed single particle (SP) ICPMS coupled online to HDC as an analytical approach suitable for simultaneously determining NP size, NP number concentration, and NP metal content. Gold (Au) NPs of various sizes were used as the model system. To achieve such characterization metrics, three calibrations were required and used to convert ICPMS signal spikes into NPs injected, NP retention time on the HDC column to NP size, and ions detected per signal spike or per NP to metal content in each NP. Two calibration experiments were required in order to make all three calibrations. Also, contour plots were constructed in order to provide for a convenient and most informative viewing of this data. An example of this novel analytical approach was demonstrated for the analysis of Au NPs that had been spiked into drinking water at the ng Au L(-1) level. The described technique gave limits of detection for 60 nm Au NPs of approximately 2.2 ng Au L(-1) or expressed in terms of NP number concentrations of 600 Au NPs mL(-1). These were obtained while the 60 nm NPs exhibited a retention time of 771 s at a mobile phase flow rate of 1 mL min(-1).  相似文献   

16.
Selenium nanoparticles (Se NPs) were synthesised using sodium borohydride as a reductant and gum kondagogu as a stabiliser. Plant gum serves as a renewable, non‐toxic, non‐immunogenic, biopolymer based feedstock. Role of gum on synthesis and mean particle size was studied using ultraviolet‐visible spectroscopy and dynamic light scattering. NP generation was visualised with orange red colouration and NPs exhibited a surface plasmon resonance peak at 250 nm. Formed NPs were amorphous, polydisperse and spherical. NPs showed a bimodal distribution, size varied from 44.4 to 200 nm and mean particle size was 105.6 nm. NP solution exhibited a zeta potential of −39.9 mV, confirming the superior stability. In comparison to ionic Se, the gum capped Se NPs exhibited superior 1, 1‐diphenyl‐2‐picrylhydrazyle and 2, 2‐azinobis‐(3‐ethylbenzthinzoline‐6‐sulphonic acid) radial scavenging activities of 73.2 and 92.2%, respectively, at 25 µg/ml. Antibacterial potential of NPs was checked with well diffusion assay. NPs exhibited growth inhibition activity against Gram‐positive bacteria only. Bacillus subtilis and Micrococcus luteus showed respective inhibition zones of 6.3 and 8.6 mm at 12 µg. Thus, the present study demonstrates the applicability of tree gum stabilised Se NPs as a potent antioxidant nutrition supplement at a much lower dose, in comparison with ionic Se.Inspec keywords: light scattering, microorganisms, particle size, nanoparticles, antibacterial activity, selenium, surface plasmon resonance, nanofabrication, visible spectra, organic compounds, reduction (chemical), electrokinetic effects, ultraviolet spectra, renewable materials, sodium compoundsOther keywords: mean particle size, selenium nanoparticles, sodium borohydride reductant, kondagogu gum stabiliser, biopolymer‐based feedstock, renewable material, ultraviolet–visible spectroscopy, orange red colouration, dynamic light scattering technique, zeta potential value, surface plasmon resonance method, antibacterial potential, well‐diffusion assay, Bacillus subtilis, Micrococcus luteus, antioxidant nutrition supplement, bacterial growth inhibition activity, 2,2‐azinobis‐(3‐ethylbenzthinzoline‐6‐sulphonic acid), 1,1 diphenyl picryl hydrazyle, size 105.6 nm, size 6.3 mm, size 8.6 mm, size 44.4 nm to 200.0 nm, Se, NaBH4   相似文献   

17.
Nanotechnology is an emerging field of science that applies particles between 1 and 100 nm in size for a range of practical uses. Nano‐technological discoveries have opened novel applications in biotechnology and agriculture. Many reactions involving nanoparticles (NPs) are more efficient compared to those of their respective bulk materials. NPs obtained from plant material, denoted as biogenic or phytosynthesised NPs, are preferred over chemically synthesised NPs due to their low toxicity, rapid reactions and cost‐effective production. NPs impart both positive and negative impacts on plant growth and development. NPs exhibit their unique actions as a function of their size, reactivity, surface area and concentration. An insight into NP biosynthesis and translocation within the plant system will shed some light on the roles and mechanisms of NP‐mediated regulation of plant metabolism. This review is a step towards that goal.Inspec keywords: nanofabrication, nanoparticles, nanobiotechnology, particle size, reviews, botany, biochemistryOther keywords: chemically synthesised NPs, low toxicity, rapid reactions, cost‐effective production, positive impacts, plant growth, translocation, plant system, plant metabolism, nanotechnological discoveries, biotechnology, agriculture, plant material, biogenic NPs, phytosynthesised NPs, bulk materials, nanoparticles, biosynthesis, surface area, review, size 1.0 nm to 100.0 nm  相似文献   

18.
For the preparation of printed devices based on ZnO nanoparticles (ZnO NPs), stable colloidal dispersions of these materials are highly desirable. ZnO NPs have been synthesized by Chemical Vapor Synthesis. The particles have a spherical shape with a narrow size distribution. Stable aqueous dispersions of the ZnO NPs have been successfully prepared after the addition of a polymeric stabilizer. These stable dispersions have been used to print ZnO NP films on interdigital gold structures on silicon by ink-jet printing. The printing parameters have been optimized for forming layers with high quality. Close-packed ZnO NP thin films with a thickness between 100-250 nm have been prepared. Impedance spectroscopy has been used to study the gas sensing properties of the printed films at different temperatures in air and in hydrogen. The impedance spectra show the semi-circles typical for semiconducting materials. The conductance of the printed films has been measured at room temperature with high accuracy. In hydrogen gas, the conductance is larger as expected and this behavior is reversible.  相似文献   

19.
We report a hybrid photoelectrode fabricated by using single crystalline rutile TiO2 nanowires (NWs) inlaid with anatase TiO2 nanoparticles (NPs) for efficient dye-sensitized solar cells. For this purpose, ∼4-μm-thick vertically aligned NWs were synthesized on the FTO glass substrate through a solvothermal treatment. Then, as-prepared NW film was treated with the NP colloidal dispersion to construct the NW–NP film. In particular, the NWs offer a fast pathway for electron transport as well as light scattering effect. On the other hand, the inlaid NPs give an extra amount of space for the dye-uptake. Accordingly, the present NW–NP electrode exhibited 6.2% of the conversion efficiency, which corresponds to ∼48% improvement over the efficiency of the NP-DSC. We attribute this notable result to the synergetic effects of the enhanced light confinement, charge collection, and dye-loading.  相似文献   

20.
Silver nanoparticles (NPs) are immobilised on pistachio shell surface by Cichorium intybus L. leaves extract as an antioxidant media. The Fourier transform infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy equipped with energy‐dispersive X‐ray spectroscopy, and transmission electron microscope analyses confirmed the support of silver NPs on the pistachio shell (Ag NPs/pistachio shell). Ag NPs on the pistachio shell had a diameter basically in the 10–15 nm range. Reduction reactions of 4‐nitrophenol (4‐NP), and organic dyes at ambient condition were used in the investigation of the catalytic performance of the prepared catalyst. Through this research, the Ag NPs/pistachio shell shows a high activity and recyclability, and reusability without loss of its catalytic activity.Inspec keywords: transmission electron microscopy, nanoparticles, X‐ray diffraction, catalysis, nanofabrication, dyes, X‐ray chemical analysis, reduction (chemical), silver, catalysts, Fourier transform infrared spectra, field emission scanning electron microscopyOther keywords: waste pistachio shell, silver nanoparticles, catalytic reduction processes, pistachio shell surface, antioxidant media, infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscope analyses, reduction reactions, catalytic performance, catalytic activity, Cichorium intybus L. leaves extract, size 10.0 nm to 15.0 nm, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号