首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of self-organization resulting in coordinated collective motion has received wide attention from a range of scientists interested in both its technical and biological relevance. Models have been highly influential in highlighting how collective motion can be produced from purely local interactions between individuals. Typical models in this field are termed ‘metric’ because each individual only reacts to conspecifics within a fixed distance. A recent large-scale study has, however, provided evidence that interactions ruling collective behaviour occur between a fixed number of nearest neighbours (‘topological’ framework). Despite their importance in clarifying the nature of the mechanism underlying animal interactions, these findings have yet to be produced by either metric or topological models. Here, we present an original individual-based model of collective animal motion that reproduces the previous findings. Our approach bridges the current gap between previous model analysis and recent evidence, and presents a framework for further study.  相似文献   

2.
Animals form groups for many reasons, but there are costs and benefits associated with group formation. One of the benefits is collective memory. In groups on the move, social interactions play a crucial role in the cohesion and the ability to make consensus decisions. When migrating from spawning to feeding areas, fish schools need to retain a collective memory of the destination site over thousands of kilometres, and changes in group formation or individual preference can produce sudden changes in migration pathways. We propose a modelling framework, based on stochastic adaptive networks, that can reproduce this collective behaviour. We assume that three factors control group formation and school migration behaviour: the intensity of social interaction, the relative number of informed individuals and the strength of preference that informed individuals have for a particular migration area. We treat these factors independently and relate the individuals’ preferences to the experience and memory for certain migration sites. We demonstrate that removal of knowledgeable individuals or alteration of individual preference can produce rapid changes in group formation and collective behaviour. For example, intensive fishing targeting the migratory species and also their preferred prey can reduce both terms to a point at which migration to the destination sites is suddenly stopped. The conceptual approaches represented by our modelling framework may therefore be able to explain large-scale changes in fish migration and spatial distribution.  相似文献   

3.
Many spatial patterns observed in nature emerge from local processes and their interactions with the local environment. The clustering of objects by social insects represents such a pattern formation process that can be observed at both the individual and the collective level. In this paper, we study the interaction between air currents and clustering behaviour in order to address the coordinating mechanisms at the individual level that underlie the spatial pattern formation process in a heterogeneous environment. We choose the corpse clustering behaviour of the ant Messor sanctus as an experimental paradigm. In a specifically designed experimental set-up with a well-controlled laminar air flow (approx. 1 cm s-1), we first quantify the modulation of the individual corpse aggregation behaviour as a function of corpse density, air flow intensity and the ant's position with respect to corpse piles and air flow direction. We then explore by numerical simulation how the forming corpse piles modify the laminar air flow around them and link this result with the individual behaviour modulation. Finally, we demonstrate on the collective level that this laminar air flow leads to an elongation and a slow displacement of the formed corpse piles in the direction of the air current. Both the individual behaviour modulated by air flow and the air flow modulated by the forming corpse piles can explain the pile patterns observed on the collective level as a stigmergic process. We discuss the generality of this coordinating mechanism to explain the clustering phenomena in heterogeneous environments reported in the literature.  相似文献   

4.
The study of collective or group-level movement patterns can provide insight regarding the socio-ecological interface, the evolution of self-organization and mechanisms of inter-individual information exchange. The suite of drivers influencing coordinated movement trajectories occur across scales, resulting from regular annual, seasonal and circadian stimuli and irregular intra- or interspecific interactions and environmental encounters acting on individuals. Here, we promote a conceptual framework with an associated statistical machinery to quantify the type and degree of synchrony, spanning absence to complete, in pairwise movements. The application of this framework offers a foundation for detailed understanding of collective movement patterns and causes. We emphasize the use of Fourier and wavelet approaches of measuring pairwise movement properties and illustrate them with simulations that contain different types of complexity in individual movement, correlation in movement stochasticity, and transience in movement relatedness. Application of this framework to movements of free-ranging African elephants (Loxodonta africana) provides unique insight on the separate roles of sociality and ecology in the fission–fusion society of these animals, quantitatively characterizing the types of bonding that occur at different levels of social relatedness in a movement context. We conclude with a discussion about expanding this framework to the context of larger (greater than three) groups towards understanding broader population and interspecific collective movement patterns and their mechanisms.  相似文献   

5.
Self-propelled particle (SPP) models are often compared with animal swarms. However, the collective animal behaviour observed in experiments often leaves considerable unconstrained freedom in the structure of a proposed model. Essentially, multiple models can describe the observed behaviour of animal swarms in simple environments. To tackle this degeneracy, we study swarms of SPPs in non-trivial environments as a new approach to distinguish between candidate models. We restrict swarms of SPPs to circular (periodic) channels where they polarize in one of two directions (like spins) and permit information to pass through windows between neighbouring channels. Co-alignment between particles then couples the channels (anti-ferromagnetically) so that they tend to counter-rotate. We study channels arranged to mimic a geometrically frustrated anti-ferromagnet and show how the effects of this frustration allow us to better distinguish between SPP models. Similar experiments could therefore improve our understanding of collective motion in animals. Finally, we discuss how the spin analogy can be exploited to construct universal logic gates, and therefore swarming systems that can function as Turing machines.  相似文献   

6.
Animal societies rely on interactions between group members to effectively communicate and coordinate their actions. To date, the transmission properties of interaction networks formed by direct physical contacts have been extensively studied for many animal societies and in all cases found to inhibit spreading. Such direct interactions do not, however, represent the only viable pathways. When spreading agents can persist in the environment, indirect transmission via ‘same-place, different-time’ spatial coincidences becomes possible. Previous studies have neglected these indirect pathways and their role in transmission. Here, we use rock ant colonies, a model social species whose flat nest geometry, coupled with individually tagged workers, allowed us to build temporally and spatially explicit interaction networks in which edges represent either direct physical contacts or indirect spatial coincidences. We show how the addition of indirect pathways allows the network to enhance or inhibit the spreading of different types of agent. This dual-functionality arises from an interplay between the interaction-strength distribution generated by the ants'' movement and environmental decay characteristics of the spreading agent. These findings offer a general mechanism for understanding how interaction patterns might be tuned in animal societies to control the simultaneous transmission of harmful and beneficial agents.  相似文献   

7.
Social animals commonly form aggregates that exhibit emergent collective behaviour, with group dynamics that are distinct from the behaviour of individuals. Simple models can qualitatively reproduce such behaviour, but only with large numbers of individuals. But how rapidly do the collective properties of animal aggregations in nature emerge with group size? Here, we study swarms of Chironomus riparius midges and measure how their statistical properties change as a function of the number of participating individuals. Once the swarms contain order 10 individuals, we find that all statistics saturate and the swarms enter an asymptotic regime. The influence of environmental cues on the swarm morphology decays on a similar scale. Our results provide a strong constraint on how rapidly swarm models must produce collective states. But our findings support the feasibility of using swarms as a design template for multi-agent systems, because self-organized states are possible even with few agents.  相似文献   

8.
We identify a unique viewpoint on the collective behaviour of intelligent agents. We first develop a highly general abstract model for the possible future lives these agents may encounter as a result of their decisions. In the context of these possibilities, we show that the causal entropic principle, whereby agents follow behavioural rules that maximize their entropy over all paths through the future, predicts many of the observed features of social interactions among both human and animal groups. Our results indicate that agents are often able to maximize their future path entropy by remaining cohesive as a group and that this cohesion leads to collectively intelligent outcomes that depend strongly on the distribution of the number of possible future paths. We derive social interaction rules that are consistent with maximum entropy group behaviour for both discrete and continuous decision spaces. Our analysis further predicts that social interactions are likely to be fundamentally based on Weber''s law of response to proportional stimuli, supporting many studies that find a neurological basis for this stimulus–response mechanism and providing a novel basis for the common assumption of linearly additive ‘social forces’ in simulation studies of collective behaviour.  相似文献   

9.
Abstract

We present a simple model for two-electron excitation and ionization of an atom in the presence of an intense laser field. We show, in particular, how the Coulomb interaction, via configuration interaction, prevents the excitation and ionization from being collective in all but the most intense fields. By collective we mean that each electron has the same spatial wavefunction: this implies that the electron pair may be described by a restricted time-dependent Hartree-Fock wavefunction. The configuration interaction prevents collective behaviour not only through the process of auto-ionization but also through the mixing of doubly excited independent electron states into the ground state. We are able to give criteria for establishing true collective excitation and ionization of our model two-electron system in an intense field.  相似文献   

10.
结合企业对于资源投入以及收益的阶段性要求,改进了相互独立的R&D项目组合选择摹本模型,以此为基础先后建立了基于多个项目间收益相互影响、技术相互影响以及资源相互影响同时发生的一般模型。结合具体的计算实例,验证了一般模型的有效性并分析了考虑项目间相互影响与否而产生的R&D项目组合选择差异。  相似文献   

11.
12.
Micro-organisms play a vital role in many biological, medical and engineering phenomena. Some recent research efforts have demonstrated the importance of biomechanics in understanding certain aspects of micro-organism behaviours such as locomotion and collective motions of cells. In particular, spatio-temporal coherent structures found in a bacterial suspension have been the focus of many research studies over the last few years. Recent studies have shown that macroscopic properties of a suspension, such as rheology and diffusion, are strongly affected by meso-scale flow structures generated by swimming microbes. Since the meso-scale flow structures are strongly affected by the interactions between microbes, a bottom-up strategy, i.e. from a cellular level to a continuum suspension level, represents the natural approach to the study of a suspension of swimming microbes. In this paper, we first provide a summary of existing biomechanical research on interactions between a pair of swimming micro-organisms, as a two-body interaction is the simplest many-body interaction. We show that interactions between two nearby swimming micro-organisms are described well by existing mathematical models. Then, collective motions formed by a group of swimming micro-organisms are discussed. We show that some collective motions of micro-organisms, such as coherent structures of bacterial suspensions, are satisfactorily explained by fluid dynamics. Lastly, we discuss how macroscopic suspension properties are changed by the microscopic characteristics of the cell suspension. The fundamental knowledge we present will be useful in obtaining a better understanding of the behaviour of micro-organisms.  相似文献   

13.
For many years, the dominant conceptual framework for describing non-oriented animal movement patterns has been the correlated random walk (CRW) model in which an individual''s trajectory through space is represented by a sequence of distinct, independent randomly oriented ‘moves’. It has long been recognized that the transformation of an animal''s continuous movement path into a broken line is necessarily arbitrary and that probability distributions of move lengths and turning angles are model artefacts. Continuous-time analogues of CRWs that overcome this inherent shortcoming have appeared in the literature and are gaining prominence. In these models, velocities evolve as a Markovian process and have exponential autocorrelation. Integration of the velocity process gives the position process. Here, through a simple scaling argument and through an exact analytical analysis, it is shown that autocorrelation inevitably leads to Lévy walk (LW) movement patterns on timescales less than the autocorrelation timescale. This is significant because over recent years there has been an accumulation of evidence from a variety of experimental and theoretical studies that many organisms have movement patterns that can be approximated by LWs, and there is now intense debate about the relative merits of CRWs and LWs as representations of non-orientated animal movement patterns.  相似文献   

14.
The main hypothesis of this paper is that the economic and social risks of outsourcing for individual and collective actors can be reduced or better controlled if the decentralization processes are the subject of innovative forms of negotiated regulation. But models of supply chain governance are very different not only across countries, e.g. between Italy and the USA, but also across territories within the same country, as in the case of the Italian automobile districts. The results of comparative empirical studies of outsourcing in the USA and Italy underline differences in the form of social regulation, more competitive in the former than the latter. But a comparative analysis of the two Italian regions of Piedmont and Basilicata reveals very divergent territorial patterns of supply chain governance alongside some common tendencies in relation to innovation, industrial relations, and human resource management.  相似文献   

15.
The main hypothesis of this paper is that the economic and social risks of outsourcing for individual and collective actors can be reduced or better controlled if the decentralization processes are the subject of innovative forms of negotiated regulation. But models of supply chain governance are very different not only across countries, e.g. between Italy and the USA, but also across territories within the same country, as in the case of the Italian automobile districts. The results of comparative empirical studies of outsourcing in the USA and Italy underline differences in the form of social regulation, more competitive in the former than the latter. But a comparative analysis of the two Italian regions of Piedmont and Basilicata reveals very divergent territorial patterns of supply chain governance alongside some common tendencies in relation to innovation, industrial relations, and human resource management.  相似文献   

16.
Based on a fully-coupled rigorous mathematical approach, we analyse the anti-plane collective behaviour of a group of identical buildings that stand at regular spatial intervals on a linear elastic half-space and are subjected to dynamic horizontal impact load. Each building in this “town” is assumed to consist of an elastic spring that connects a concentrated mass at the top and the rigid foundation at the bottom. We show that, due to the multiple interactions between the buildings through (the waves in) the ground, the eigenfrequencies of the structural group (town) become lower than the resonant frequency of a single building. This shift of eigenfrequencies may be called the “town (or city) effect,” and may give rise to “unexpected” dynamic structural failure patterns at lower frequencies. We summarise some quantitative information about this town effect and suggest its significance by investigating the actual structural failure patterns found on the occasions of the 1976 Friuli, Italy, and 2007 Noto Peninsula, Japan, earthquakes. The elastodynamic collective failure analysis here is different from the conventional ones in engineering seismology where each individual structure is handled separately. The frequency shifts and “unexpected” structural behaviour may be recognised if the mechanical movement of the structural group is analysed jointly. The town effect may be induced by dynamic structural impact in general (e.g., blasting, aircraft impact), and therefore, the simple analytical model handled here may contain the essential features that will be of crucial importance in evaluating more general dynamic performance and safety of structural groups in urban environments.  相似文献   

17.
The ability of cells to undergo collective movement plays a fundamental role in tissue repair, development and cancer. Interactions occurring at the level of individual cells may lead to the development of spatial structure which will affect the dynamics of migrating cells at a population level. Models that try to predict population-level behaviour often take a mean-field approach, which assumes that individuals interact with one another in proportion to their average density and ignores the presence of any small-scale spatial structure. In this work, we develop a lattice-free individual-based model (IBM) that uses random walk theory to model the stochastic interactions occurring at the scale of individual migrating cells. We incorporate a mechanism for local directional bias such that an individual''s direction of movement is dependent on the degree of cell crowding in its neighbourhood. As an alternative to the mean-field approach, we also employ spatial moment theory to develop a population-level model which accounts for spatial structure and predicts how these individual-level interactions propagate to the scale of the whole population. The IBM is used to derive an equation for dynamics of the second spatial moment (the average density of pairs of cells) which incorporates the neighbour-dependent directional bias, and we solve this numerically for a spatially homogeneous case.  相似文献   

18.
The dynamics of sleep and wake are strongly linked to the circadian clock. Many models have accurately predicted behaviour resulting from dynamic interactions between these two systems without specifying physiological substrates for these interactions. By contrast, recent experimental work has identified much of the relevant physiology for circadian and sleep-wake regulation, but interaction dynamics are difficult to study experimentally. To bridge these approaches, we developed a neuronal population model for the dynamic, bidirectional, neurotransmitter-mediated interactions of the sleep-wake and circadian regulatory systems in nocturnal rats. This model proposes that the central circadian pacemaker, located within the suprachiasmatic nucleus (SCN) of the hypothalamus, promotes sleep through single neurotransmitter-mediated signalling to sleep-wake regulatory populations. Feedback projections from these populations to the SCN alter SCN firing patterns and fine-tune this modulation. Although this model reproduced circadian variation in sleep-wake dynamics in nocturnal rats, it failed to describe the sleep-wake dynamics observed in SCN-lesioned rats. We thus propose two alternative, physiologically based models in which neurotransmitter- and neuropeptide-mediated signalling from the SCN to sleep-wake populations introduces mechanisms to account for the behaviour of both the intact and SCN-lesioned rat. These models generate testable predictions and offer a new framework for modelling sleep-wake and circadian interactions.  相似文献   

19.
Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight.  相似文献   

20.
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion.The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号