首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly (ɛ‐caprolactone)–chitosan–poly (vinyl alcohol) (PCL: Cs: PVA) nanofibrous blend scaffolds were known as useful materials for skin wound healing and would help the healing process about 50% faster at the final time point. From the previous studies by the authors, PCL: Cs: PVA (in 2: 1: 1.5 mass ratio) nanofibres showed high efficacy in healing on rat models. In this study, the scaffolds were examined in burn and excision wounds healing on dogs as bigger models. The scaffolds were applied on dorsum skin wounds (n  = 5) then macroscopic and microscopic investigations were carried out to measure the wounds areas and to track healing rate, respectively. Macroscopic results showed good aspect healing effect of scaffolds compared with control wounds especially after 21 days post‐operating for both cutting and burn wounds. Pathological studies showed that the healing rates of the wounds covered with PCL: Cs: PVA nanofibrous scaffolds were much rapid compared to untreated wounds in control group. The immunogenicity of the scaffolds in canine model was also investigated. The findings showed that nanofibrous blend scaffolds was not immunogenic in humoural immune responses. All these results indicated that PCL: Cs: PVA nanofibrous web could be considered as promising materials for wounds healings.Inspec keywords: nanofibres, nanomedicine, biomedical materials, polymer fibres, polymer blends, skin, woundsOther keywords: poly(ε‐caprolactone)‐chitosan‐poly (vinyl alcohol) nanofibrous blend scaffolds, skin excisional wounds, burn wounds, canine model, skin wound healing, dorsum skin wounds, macroscopic investigations, microscopic investigations, healing rate, cutting wounds, pathological study, humoural immune responses, nanofibrous web, immunogenicity, time 21 day  相似文献   

2.
Nano‐titania, chondroitin‐4‐sulphate, and titania/chondroitin‐4‐sulphate nanocomposite were separately deposited on Ti–6Al–4V alloys by repetitive spin coating. Surface characterisation techniques were used to find out the crystalline nature, chemical bonding, surface homogeneity, and elemental composition. Biological studies of nanocomposite‐coated alloys revealed the formation of stable hydroxyapatite (Ca/P = 1.678), superior corrosion resistance, and ∼12 mm zone of inhibition against Staphylococcus sp. However, the cell line studies revealed the better response on polymer‐coated alloy than the uncoated and composite‐coated alloy. It has been found that the nanocomposite coating can synergistically increase the thickness of the pre‐existing passive layer and thereby improve the corrosion resistance of Ti–6Al–4V implant in simulated body fluid. The nanocomposite coatings improved the corrosion resistance of the bare Ti–6Al–4V implant specimens by decreasing the i corr. The formation of hydroxyapatite on nanocomposite‐coated alloy may have ability to inhibit the release of toxic substance to the adjacent tissues. In addition, the in vitro cell line study confers that the nanocomposite‐coated Ti–6Al–4V induces cell attachment and proliferation, and it eventually help to new bone cell formation than the uncoated one. Overall, this nanocomposite coating can be applied in orthopedic applications for effective biomimic bone regeneration.Inspec keywords: titanium compounds, nanocomposites, titanium alloys, aluminium alloys, vanadium alloys, nanomedicine, biomedical materials, prosthetics, X‐ray diffraction, Fourier transform spectra, infrared spectra, scanning electron microscopy, fluorescence, corrosion resistance, polymer films, calcium compounds, cellular biophysics, boneOther keywords: chondroitin‐4‐sulphate nanocomposite coating, implants, prostheses, nano‐titania, repetitive spin coating, surface characterisation, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray fluorescence, TiAlV, TiO2 , effective biomimic bone regeneration, orthopaedic applications, bone cell formation, osteoblast cells, cell proliferation, cell attachment, simulated body fluid solution, composite‐coated alloy, polymer‐coated alloy, Staphylococcus sp, corrosion resistance, hydroxyapatite, elemental composition, surface homogeneity, chemical bonding, crystalline nature  相似文献   

3.
Quantifying the in vivo interfacial biochemical bond strength of bone implants is a biological challenge. We have developed a new and novel in vivo method to identify an interfacial biochemical bond in bone implants and to measure its bonding strength. This method, named biochemical bond measurement (BBM), involves a combination of the implant devices to measure true interfacial bond strength and surface property controls, and thus enables the contributions of mechanical interlocking and biochemical bonding to be distinguished from the measured strength values. We applied the BBM method to a rabbit model, and observed great differences in bone integration between the oxygen (control group) and magnesium (test group) plasma immersion ion-implanted titanium implants (0.046 versus 0.086 MPa, n=10, p=0.005). The biochemical bond in the test implants resulted in superior interfacial behaviour of the implants to bone: (i) close contact to approximately 2 μm thin amorphous interfacial tissue, (ii) pronounced mineralization of the interfacial tissue, (iii) rapid bone healing in contact, and (iv) strong integration to bone. The BBM method can be applied to in vivo experimental models not only to validate the presence of a biochemical bond at the bone–implant interface but also to measure the relative quantity of biochemical bond strength. The present study may provide new avenues for better understanding the role of a biochemical bond involved in the integration of bone implants.  相似文献   

4.
The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone–implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.  相似文献   

5.
Ethnic value of many known plants are underexploited for medicinal application besides their proven traditional qualities. One such plant known for wound healing is Tridax procumbens. This plant has wound healing property and is commercially unexploited. Silver nanoparticle (Ag‐NP) were synthesized using this plant extracts using different solvents (methanol, ethyl acetate and aqueous), which exhibit resonance at 426, 424 and 418 nm, respectively. This plant‐mediated Ag‐NPs have strong anti‐bactericidal activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, Serratia marcescens and Bacillus subtilis with methanol extract. Further instance, elemental composition was confirmed by energy dispersive X‐ray analysis and particle size ranges were observed at 80–200 nm with spherical shape nanoparticles by scanning electron microscopy and transmission electron microscopy analysis. The biocompatibility of Ag‐NPs was assessed using fibroblast cell line (L929) by MTT assay with 109.35 µg IC50 value. The oxygen plasma treated and non‐treated bamboo spunlaced nonwoven fabrics were coated with the Ag‐NPs by exhaust method. Contact angle and water retention revealed significant difference in absorption ability of plasma treated fabric. Field emission scanning electron microscopy revealed the presence of Ag‐NPs in plasma coated fabrics. The fabricated cloth was studied for anti‐microbial and microbial penetration ability.Inspec keywords: solvents (industrial), organic compounds, woven composites, field emission scanning electron microscopy, plasma materials processing, contact angle, transmission electron microscopy, X‐ray diffraction, fabrics, biomedical materials, wounds, silver, nanoparticles, particle size, nanofabrication, thermal analysis, antibacterial activity, microorganisms, X‐ray chemical analysisOther keywords: biomedical application, ethnic value, medicinal application, wound healing property, silver nanoparticle synthesis, methanol, ethyl acetate, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, nonwoven fabrics, field emission scanning electron microscopy, plasma coated fabrics, fabricated cloth, solvents, antibactericidal activity, Staphylococcus aureus, particle size, transmission electron microscopy, oxygen plasma treatment, bamboo material, Tridax procumbens extracts, Serratia marcescens, Bacillus subtilis, elemental composition, energy dispersive X‐ray analysis, scanning electron microscopy, material biocompatibility, fibroblast cell line, exhaust method, contact angle, water retention, absorption ability, antimicrobial property, microbial penetration ability, size 424.0 nm, size 418.0 nm, size 80.0 nm to 200.0 nm, size 426.0 nm, Ag  相似文献   

6.
A facile and green synthesis of the Ag/ZnO nanocomposite by extract of Valeriana officinalis L. root in the absence of any stabiliser or surfactant has been reported in this work. The green synthesised Ag/ZnO nanocomposite was characterised by Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X‐ray spectroscopy (EDS), elemental mapping, Fourier‐Transform infrared (FT‐IR), X‐ray diffraction analysis (XRD) and UV‐Vis spectroscopy. According to SEM and TEM images, the Ag and ZnO particles are spherical with diameters of less than 20 and 40–50 nm, respectively. The Ag NPs/ZnO nanocomposite proved to be an effective catalyst in the reduction of various dyes including methyl orange (MO), Congo red (CR) and methylene blue (MB) in the presence of NaBH4 in aqueous media at ambient temperature. A maximum degradation (100%) of dyes was performed using Ag/ZnO nanocomposite. The extraordinary performance of the prepared Ag/ZnO nanocomposite is attributed to the synergetic effect induced by both ZnO and Ag NPs in the catalytic degradation of organic dyes. The catalyst could be reused and recovered several times with no significant loss of catalytic activity.Inspec keywords: nanocomposites, silver, zinc compounds, II‐VI semiconductors, nanofabrication, catalysts, reduction (chemical), field emission electron microscopy, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, X‐ray diffraction, surface morphology, nanoparticles, dyesOther keywords: green synthesis, nanocomposite, Valeriana officinalis L. root extract, reusable catalyst, reduction, organic dyes, surfactant, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, elemental mapping, Fourier‐transform infrared spectroscopy, X‐ray diffraction analysis, surface morphology, nanoparticles, methyl orange, congo red, methylene blue, UV–Vis spectroscopy, size 40 nm to 50 nm, wavelength 493 nm, wavelength 465 nm, wavelength 663 nm, Ag‐ZnO  相似文献   

7.
Combinatorial magnetron sputter deposition from elemental targets was used to create Fe–B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young''s modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films.  相似文献   

8.
The endothelial glycocalyx is a thin layer of polysaccharide matrix on the luminal surface of endothelial cells (ECs), which contains sulphated proteoglycans and glycoproteins. It is a mechanotransducer and functions as an amplifier of the shear stress on ECs. It controls the vessel permeability and mediates the blood–endothelium interaction. This study investigates the spatial distribution and temporal development of the glycocalyx on cultured ECs, and evaluates mechanical properties of the glycocalyx using atomic force microscopy (AFM) nano-indentation. The glycocalyx on human umbilical vein endothelial cells (HUVECs) is observed under a confocal microscope. Manipulation of the glycocalyx is achieved using heparanase or neuraminidase. The Young''s modulus of the cell membrane is calculated from the force–distance curve during AFM indentation. Results show that the glycocalyx appears predominantly on the edge of cells in the early days in culture, e.g. up to day 5 after seeding. On day 7, the glycocalyx is also seen in the apical area of the cell membrane. The thickness of the glycocalyx is approximately 300 nm–1 μm. AFM indentation reveals the Young''s modulus of the cell membrane decreases from day 3 (2.93 ± 1.16 kPa) to day 14 (0.35 ± 0.15 kPa) and remains unchanged to day 21 (0.33 ± 0.19 kPa). Significant difference in the Young''s modulus is also seen between the apical (1.54 ± 0.58 kPa) and the edge (0.69 ± 0.55 kPa) of cells at day 7. By contrast, neuraminidase-treated cells (i.e. without the glycocalyx) have similar values between day 3 (3.18 ± 0.88 kPa), day 14 (2.12 ± 0.78 kPa) and day 21 (2.15 ± 0.48 kPa). The endothelial glycocalyx in vitro shows temporal development in the early days in culture. It covers predominantly the edge of cells initially and appears on the apical membrane of cells as time progresses. The Young''s modulus of the glycocalyx is deduced from Young''s moduli of cell membranes with and without the glycocalyx layer. Our results show the glycocalyx on cultured HUVECs has a Young''s modulus of approximately 0.39 kPa.  相似文献   

9.
The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X‐ray diffraction pattern confirmed the presence of face‐centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.Inspec keywords: antibacterial activity, nanofabrication, silver, X‐ray diffraction, biomedical materials, nanomedicine, transmission electron microscopy, scanning electron microscopy, ultraviolet spectra, visible spectra, materials preparation, nanoparticlesOther keywords: pluronic F68, stabilising agent, comparative antibacterial activity, Fusarium oxysporum, UV‐visible spectra, biological synthesis, chemical synthesis, X‐ray diffraction pattern, face‐centred cubic structure, FCC plane, transmission electron microscopy, scanning electron microscopy, spherical silver nanoparticles, antibacterial efficacy, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, synergism, biogenic silver nanoparticles, wavelength 420 nm, size 10 nm to 70 nm, size 5 nm to 40 nm, Ag  相似文献   

10.
Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12–91 ± 7 mol%) of introduced moieties governed the structure–property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51–1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7–168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2–387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care.  相似文献   

11.
Migration of the Pachycondyla marginata ant is significantly oriented at 13° with respect to the geomagnetic north–south axis. On the basis of previous magnetic measurements of individual parts of the body (antennae, head, thorax and abdomen), the antennae were suggested to host a magnetoreceptor. In order to identify Fe3+/Fe2+ sites in antennae tissue, we used light microscopy on Prussian/Turnbull''s blue-stained tissue. Further analysis using transmission electron microscopy imaging and diffraction, combined with elemental analysis, revealed the presence of ultra-fine-grained crystals (20–100 nm) of magnetite/maghaemite (Fe3O4/γ-Fe2O3), haematite (α-Fe2O3), goethite (α-FeOOH) besides (alumo)silicates and Fe/Ti/O compounds in different parts of the antennae, that is, in the joints between the third segment/pedicel, pedicel/scape and scape/head, respectively. The presence of (alumo)silicates and Fe/Ti/O compounds suggests that most, if not all, of the minerals in the tissue are incorporated soil particles rather than biomineralized by the ants. However, as the particles were observed within the tissue, they do not represent contamination. The amount of magnetic material associated with Johnston''s organ and other joints appears to be sufficient to produce a magnetic-field-modulated mechanosensory output, which may therefore underlie the magnetic sense of the migratory ant.  相似文献   

12.
The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania‐chitosan‐chondroitin 4–sulphate nanocomposites of three different concentrations (2:1:x, where x ‐ 0.125, 0.25, 0.5) have been synthesised by in situ sol–gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30–50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG‐63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.Inspec keywords: titanium compounds, filled polymers, nanocomposites, bone, orthopaedics, biomedical materials, sol‐gel processing, nanofabrication, particle size, swelling, microorganisms, cellular biophysics, nanomedicine, prostheticsOther keywords: in situ synthesised TiO2 ‐chitosan‐chondroitin 4‐sulphate nanocomposites, bone implant applications, artificial materials, in situ sol‐gel method, particle size, swelling nature, antimicrobial nature, microorganisms, Staphylococcus aureus, Escherichia coli, cell viability, MG‐63, biomaterial, size 30 nm to 50 nm, TiO2   相似文献   

13.
Microcrystals of α-tetragonal (α-t) boron with unit cell parameters a=9.05077(6) and c=5.13409(6) Å and measured density 2.16–2.22 g cm−3 were obtained by pyrolysis of decaborane B10H14 at pressures of 8–9 GPa and temperatures of 1100–1600 C. The crystal structure is in good agreement with the model proposed by Hoard et al (1958 J. Am. Chem. Soc. 80 4507). However, compared to the original model, we found small deformations of icosahedra and changes in the interatomic distances within the unit cell of the synthesized α-t boron.  相似文献   

14.
The housing tube material of the marine worm Chaetopterus sp. exhibits thermal stability up to 250°C, similar to other biological materials such as mulberry silkworm cocoons. Interestingly, however, dynamic mechanical thermal analysis conducted in both air and water elucidated the lack of a glass transition in the organic tube wall material. In fact, the viscoelastic properties of the anhydrous and undried tube were remarkably stable (i.e. constant and reversible) between –75°C and 200°C in air, and 5°C and 75°C in water, respectively. Moreover, it was found that hydration and associated-water plasticization were key to the rubber-like flexible properties of the tube; dehydration transformed the material behaviour to glass-like. The tube is made of bionanocomposite fibrils in highly oriented arrangement, which we argue favours the biomaterial to be highly crystalline or cross-linked, with extensive hydrogen and/or covalent bonds. Mechanical property characterization in the longitudinal and transverse directions ascertained that the tubes were not quasi-isotropic structures. In general, the higher stiffness and strength in the transverse direction implied that there were more nanofibrils orientated at ±45° and ±65° than at 0° to the tube axis. The order of the mechanical properties of the soft–tough tubes was similar to synthetic rubber-like elastomers and even some viscid silks. The complex structure–property relations observed indicated that the worm has evolved to produce a tubular housing structure which can (i) function stably over a broad range of temperatures, (ii) endure mechanical stresses from specific planes/axes, and (iii) facilitate rapid growth or repair.  相似文献   

15.
For the first time, through a fast, eco‐friendly and economic method, the aqueous extract of the leaf of Euphorbia corollate was used to the green synthesis of the highly stable CuO@Magnetite@Hen Bone nanocomposites (NCs) as a potent antioxidant and antibacterial agent against Pseudomonas aureus, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae pathogenic bacteria. The biosynthesised NCs were identified using the scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy, elemental mapping, X‐ray diffraction (XRD), Fourier transforms infrared spectroscopy and UV–vis analytical techniques. Also, the radical scavenging activity using (2,2‐diphenyl‐1‐picrylhydrazyl) method was used to evaluate the antioxidant activity of the NCs. The stability of nanocatalyst was monitored using the XRD and SEM analyses after 30 days from its synthesis. Furthermore, its excellent catalytic activity, recycling stability, and high substrate applicability were demonstrated to the adsorption of the polycyclic aromatic hydrocarbons of the light crude oil from Shiwashok oil fields and destruction of methylene blue and methyl orange as harmful organic dyes at ambient temperature using UV–vis spectroscopy. Moreover, the green CuO@Magnetite@Hen Bone NCs were recovered and reused several times without considerable loss of its catalytic activity.Inspec keywords: nanobiotechnology, X‐ray diffraction, infrared spectra, catalysis, crude oil, Fourier transform spectra, ultraviolet spectra, scanning electron microscopy, dyes, catalysts, photochemistry, iron compounds, X‐ray chemical analysis, antibacterial activity, adsorption, visible spectra, microorganisms, organic compounds, reduction (chemical), nanomedicine, toxicology, recycling, chemical industryOther keywords: antioxidant activity, XRD, SEM analyses, recycling stability, polycyclic aromatic hydrocarbons, harmful organic dyes, UV–vis spectroscopy, green CuO@Magnetite@Hen Bone NCs, reusable CuO@Magnetite@Hen Bone NCs, recyclable CuO@Magnetite@Hen Bone NCs, antioxidant activities, antibacterial activities, highly stable magnetically nanocatalyst, eco‐friendly method, economic method, euphorbia corollate, green synthesis, CuO@Magnetite@Hen Bone nanocomposites, antibacterial agent, pseudomonas aureus, staphylococcus aureus, escherichia coli, klebsiella pneumoniae pathogenic bacteria, biosynthesised NCs, X‐ray spectroscopy, X‐ray diffraction, radical scavenging activity, antioxidant agent, 2,2‐diphenyl‐1‐picrylhydrazyl, catalytic activity, organic dye reduction, light crude oil, CuO  相似文献   

16.
The osteocyte is believed to act as the main sensor of mechanical stimulus in bone, controlling signalling for bone growth and resorption in response to changes in the mechanical demands placed on our bones throughout life. However, the precise mechanical stimuli that bone cells experience in vivo are not yet fully understood. The objective of this study is to use computational methods to predict the loading conditions experienced by osteocytes during normal physiological activities. Confocal imaging of the lacunar–canalicular network was used to develop three-dimensional finite element models of osteocytes, including their cell body, and the surrounding pericellular matrix (PCM) and extracellular matrix (ECM). We investigated the role of the PCM and ECM projections for amplifying mechanical stimulation to the cells. At loading levels, representing vigorous physiological activity (3000 µɛ), our results provide direct evidence that (i) confocal image-derived models predict 350–400% greater strain amplification experienced by osteocytes compared with an idealized cell, (ii) the PCM increases the cell volume stimulated more than 3500 µɛ by 4–10% and (iii) ECM projections amplify strain to the cell by approximately 50–420%. These are the first confocal image-derived computational models to predict osteocyte strain in vivo and provide an insight into the mechanobiology of the osteocyte.  相似文献   

17.
This study reports synthesis and characterisation of silver nanoparticles and their effect on antifungal efficacy of common agricultural fungicides. Silver nanoparticles were synthesised using biological and chemical reduction methods employing Elettaria cardamomum leaf extract and sodium citrate, respectively. Nanoparticles were then characterised using UV–Visible spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). While XRD assigned particles size of 31.86 nm for green and 41.91 nm for chemical silver nanoparticles with the help of the Debye–Scherrer formula, DLS specified monodisperse nature of both suspensions. Nanoparticles were tested individually and in combination with fungicides (carbendazim, mancozeb, and thiram) against fungal phytopathogens. Silver nanoparticles exhibited good antifungal activity and minimum inhibitory concentration (MIC) was observed in the range of 8–64 µg/ml. Also, they positively influenced the efficacy of fungicides. The mean MIC value (mean ± SD) for combination of all three fungicides with green AgNPs was 1.37 ± 0.6 µg/ml and for chemical AgNPs was 1.73 ± 1.0 µg/ml. Hence, it could be concluded that green AgNPs performed better than chemical AgNPs. Synergy was observed between green AgNPs and fungicides against Fusarium oxysporum. In conclusion, this study reports synthesis of monodisperse silver nanoparticles which serve as efficient antifungal agents and also enhance the fungicidal action of reported agricultural fungicides in combination studies.Inspec keywords: X‐ray diffraction, reduction (chemical), visible spectra, ultraviolet spectra, microorganisms, particle size, nanomedicine, nanofabrication, nanoparticles, agrochemicals, antibacterial activity, transmission electron microscopy, silver, light scattering, scanning electron microscopyOther keywords: antifungal effect, green silver nanoparticles, chemically synthesised silver nanoparticles, carbendazim, mancozeb, thiram, antifungal efficacy, common agricultural fungicides, biological reduction methods, chemical reduction methods, transmission electron microscopy, XRD assigned particles size, chemical silver nanoparticles, green AgNPs, chemical AgNPs, monodisperse silver nanoparticles, antifungal activity, agricultural fungicides, Elettaria cardamomum leaf extract, sodium citrate, UV‐visible spectroscopy, X‐ray diffraction, dynamic light scattering, size 31.86 nm, size 41.91 nm  相似文献   

18.
In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall–Petch equation. The compound Hall–Petch equation was derived from four types of duplex stainless steel, which contained 0.2–64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323–1473 K. The derived compound Hall–Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.  相似文献   

19.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

20.
The development of composite scaffolds with well-organized architecture and multi-scale properties (i.e. porosity, degradation) represents a valid approach for achieving a tissue-engineered construct capable of reproducing the medium- and long-term in vitro behaviour of hierarchically complex tissues such as spongy bone. To date, the implementation of scaffold design strategies able to summarize optimal scaffold architecture as well as intrinsic mechanical, chemical and fluid transport properties still remains a challenging issue. In this study, poly ɛ-caprolactone/polylactid acid (PCL/PLA) tubular devices (fibres of PLA in a PCL matrix) obtained by phase inversion/salt leaching and filament winding techniques were proposed as cell instructive scaffold for bone osteogenesis. Continuous fibres embedded in the polymeric matrix drastically improved the mechanical response as confirmed by compression elastic moduli, which vary from 0.214 ± 0.065 to 1.174 ± 0.143 MPa depending on the relative fibre/matrix and polymer/solvent ratios. Moreover, computational fluid dynamic simulations demonstrated the ability of composite structure to transfer hydrodynamic forces during in vitro culture, thus indicating the optimal flow rate conditions that, case by case, enables specific cellular events—i.e. osteoblast differentiation from human mesenchymal stem cells (hMSCs), mineralization, etc. Hence, we demonstrate that the hMSC differentiation preferentially occurs in the case of higher perfusion rates—over 0.05 ml min–1—as confirmed by the expression of alkaline phosphate and osteocalcin markers. In particular, the highest osteopontin values and a massive mineral phase precipitation of bone-like phases detected in the case of intermediate flow rates (i.e. 0.05 ml min–1) allows us to identify the best condition to stimulate the bone extracellular matrix in-growth, in agreement with the hydrodynamic model prediction. All these results concur to prove the succesful use of tubular composite as temporary device for long bone treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号