首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-1500D热模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量为0.7的条件下,对25%W-Cu和50%W-Cu(质量分数)复合材料的热变形行为及其热加工图进行研究和分析。结果表明:此两种复合材料的高温流动应力—应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增大;在真应力—应变曲线基础上建立的W-Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用50%W-Cu复合材料DMM加工图分析了其变形机制和失稳机制,确定其热加工工艺参数应优先选择变形温度为650~700℃、应变速率为1~5 s-1,或者变形温度为850~950℃、应变速率为0.01~0.1 s-1。  相似文献   

2.
利用Gleeble-1500D热模拟试验机,在温度650~950℃、应变速率0.01~5s-1、总应变量0.7的条件下,对W-75%Cu复合材料高温塑性变形行为及其热加工图进行研究和分析。结果表明:W-75%Cu复合材料高温流动应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-75%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-75%Cu复合材料DMM加工图分析其变形机制和失稳机制,可确定其热加工工艺参数应优先选择变形温度800~950℃、应变速率0.01~0.1s-1。  相似文献   

3.
在Gleeble-1500D热模拟机上对粉末冶金高速钢进行了变形温度为1000~1150℃、应变速率为0.001~1.0 s-1;最大变形量为60%的等温热模拟压缩变形实验,并对不同变形温度和变形速率下变形试样进行了微观组织变化的观察。结果表明:流变应力和微观组织受变形温度和应变速率的影响显著,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力在经历加工硬化阶段后均表现出加工软化,最后出现稳态流动特征。随着应变速率的减小,局部塑性流动减弱,回复与动态再结晶进行较充分,碳化物分布趋于均匀;随着变形温度的升高,扩散和动态再结晶更容易,发生连续的再结晶,晶粒容易长大粗化。综合考虑材料的微观组织和热加工图,最佳的热加工变形温度为1050~1100℃和应变速率为0.1~0.01 s-1。  相似文献   

4.
《塑性工程学报》2015,(4):128-132
采用Gleeble-1500D热模拟试验机对SA508-3CL钢在变形温度800℃~1 200℃、应变速率0.001s-1~1s-1条件下进行热压缩实验,并将获得的真应力真应变数据引入Arrhenius型本构方程,通过多元线性回归计算,得到了SA508-3CL钢的变形激活能为422.455kJ·mol-1,同时建立了该钢的流变应力本构方程。将功率耗散图与失稳图叠加,得到了SA508-3CL钢在应变量为0.3、0.5和0.7时的热加工图,对在应变量为0.7时的热加工图及金相组织分析表明,该钢的组织缺陷主要是局部流变失稳,该钢的安全加工条件为温度1100℃~1200℃,应变速率0.01s-1~0.1s-1。  相似文献   

5.
利用Gleeble-3500热模拟试验机测定了6022铝合金的应力应变行为,基于动态材料模型,构建了热加工图。观察了不同变形条件下的金相组织。实验结果表明:当形变量为60%时,6022铝合金热加工图中存在局部较高的功率耗散区(加工温度为440~550℃、应变速率为0.01~1 s~(-1)时),达30%以上,为实验材料的最佳热加工区,在该区域热变形后,材料晶粒细小;热加工图中存在3个失稳区,加工温度为300~390℃,应变速率为0.01~0.02 s~(-1);加工温度为300~340℃,应变速率为0.4~10 s~(-1);加工温度为470~500℃,应变速率为0.6~10 s~(-1)。实际热加工过程中应避开此区域,防止材料内部微观缺陷的产生。  相似文献   

6.
采用热模拟压缩实验获得20CrMnTiH材料温度范围为973~1173K和应变速率为0.01s-1~10s-1情况下的真应力-应变曲线,并绘制出材料热加工图。通过不同应变下20CrMnTiH材料加工图叠加,得到材料最佳变形工艺参数区间和材料失稳工艺参数区间。  相似文献   

7.
《连铸》2019,(6)
针对420 MPa级别海洋工程用热轧H型钢,在800~1 100℃、变形速率为0.01~5 s-1条件下进行了等温单道次轴向热压缩试验研究。根据Gleeble3800热模拟试验机试验结果,绘制应力—应变曲线并获得峰值应力,建立了该级别钢的热压缩变形抗力本构方程及热加工图并对其通过观察形变组织进行验证。结果表明:在0.01~1 s-1较低应变速率下主要以发生动态再结晶为主,第二相粒子沉淀析出使得5 s-1条件下发生加工硬化现象,呈现动态回复;综合分析热加工图与变形后组织得到真应变0.4时的适合热加工工艺区间为温度范围1 000~1 080℃,应变速率0.01~0.5 s-1;真应变0.6时的适合热加工的工艺区间为温度范围1 000~1 060℃,应变速率0.05~0.3 s-1,为后续热加工工艺提供了可靠的保证。  相似文献   

8.
采用Gleeble3800热模拟机对5182铝合金进行压缩变形试验,分析了该合金在变形温度350~480℃、应变速率0.001~1 s-1、工程变形量为66.6%条件下的流变应力变化规律。基于动态材料模型建立了5182铝合金的热变形本构方程和热加工图,确定了失稳区,得到5182铝合金热变形激活能Qdef=160.46 k J/mol;根据热加工图确定了最佳的热加工区间变形温度355~450℃,应变速率0.1~0.001 s-1。对安全区内热加工后5182铝合金组织的微观形貌进行了研究,为该合金的热加工工艺制定提供了依据。  相似文献   

9.
利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。  相似文献   

10.
利用Gleeble-1500热力模拟试验机,在温度为350 ~ 750℃、应变速率为0.01 ~5 s-1、总应变量0.7的条件下,对10%Mo/Cu-Al2O3复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行研究和分析.试验结果表明:10% Mo/Cu-Al2O3复合材料高温流动应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;同时,利用动态材料模型(DMM)加工图分析了10%Mo/Cu-Al2O3复合材料变形机制和失稳机制,并最终确定了热加工工艺参数选取范围:变形温度600 ~750℃、应变速率0.01 ~0.1 s-1.  相似文献   

11.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

12.
Mg-Gd-Y-Zn-Zr合金是新开发的超高强韧镁合金。在变形温度350~500℃、应变速率0.001~1 s-1的条件下进行了高强度镁合金Mg-10Gd-4Y-1.5Zn-0.5Zr(GWZ1042)的等温热压缩实验,获得了不同变形条件下的应力应变曲线。基于动态材料模型和Murty失稳判据,利用MATLAB软件建立了可描述材料加工性的三维加工图。结果表明,应变速率越小,温度越高,材料的功率耗散系数越大,可加工性越好;温度越低、应变速率和应变量越大,材料越容易发生流动失稳。基于加工图的热加工窗口和失稳区并结合微观组织和缺陷分析确定,GWZ1042合金最佳成形区间为:变形温度430~500℃,应变速率0.001~0.05 s-1。  相似文献   

13.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Ag合金进行高温等温压缩试验,当热压缩应变速率为0.001~10 s-1、热变形温度为650~950℃时,同时对合金高温热压缩的热加工图以及变形机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为Q=343.23 k J/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。根据动态材料模型计算并分析了合金的热加工图,并且获得了试验参数范围内热变形过程的最佳工艺参数:温度为750~800℃、应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

14.
在GLEEBLE热模拟试验机上对变形态Ti40合金进行热压缩实验,采用基于Prasad准则的加工图技术,研究变形态Ti40合金在变形温度950℃~1100℃、应变速率0.001s-1~1.0s-1范围内的微观变形机制和流变失稳现象,并优化该合金的高温变形参数。结果表明,失稳区出现在低温、高应变速率区,当变形温度为950℃~1010℃、应变速率0.13s-1~1.0s-1时,失稳区会出现局部流动,在实际热加工时应尽量避开这一参数范围;变形温度950℃~1100℃、应变速率0.001s-1~0.01s-1为较佳的变形参数范围,其变形机制以动态再结晶为主,伴随动态回复,最佳的变形参数位于温度1050℃、应变速率0.001s-1附近,该区域发生了完全动态再结晶;除失稳区和较佳变形区以外的区域,变形机制以动态回复为主,伴随动态再结晶,是可加工的区域。  相似文献   

15.
采用Gleeble-1500热模拟实验机研究了70Cr3Mo钢在不同变形条件下的高温压缩热变形行为,变形温度850~1150℃,应变速率0.01~10 s-1。依据实验数据,分析了应力、应变间的关系,建立了流变应力本构方程和加工图。由应力、应变曲线可以得出:变形温度一定时,应力峰值随着应变速率的增加而增加;应变速率一定时,应力峰值随变形温度的增加而降低。计算分析了真应变为0.5的加工图,结果表明,70Cr3Mo钢在热压缩过程中存在两个失稳区:(1)变形温度为850~940℃、应变速率为0.01~1.6 s-1;(2)变形温度为975~1150℃、应变速率为1~10 s-1。并获得了最佳的工艺参数:变形温度为1000~1150℃、应变速率为0.01~0.36 s-1。  相似文献   

16.
在Gleeble-1500D热模拟机上对Zn-Cu-Ti合金进行等温压缩试验,研究了变形温度为150~240℃,应变速率为0.01~10 s-1,变形量为50%时锌合金的热变形行为。采用光学显微镜观察热压缩过程中微观组织的变化。结果表明,锌合金在热压缩过程中发生了动态再结晶。锌合金的峰值流变应力随变形温度的升高和变形速率的下降而降低,该合金的流变应力模型可用Arrhenius方程来描述。试验中发现,该合金存在两个热加工安全区,即温度为150~210℃、变形速率为0.67~10 s-1区域和温度为215~240℃、变形速率为0.01~0.98 s-1区域。最佳热加工工艺参数:变形温度为235~240℃,变形速率为0.09~0.11 s-1,功率耗散效率为35%。  相似文献   

17.
在Gleeble-1500热模拟试验机上对6082铝合金进行多组热压缩试验,得到6082铝合金在350~500℃和0.01~5 s-1条件下的流变应力数据。根据试验数据建立基于动态材料模型的6082铝合金热加工图,结合压缩变形后的微观组织观察分析,最终获得试验参数范围内6082铝合金热变形的最佳工艺参数。结果表明:保持较高功率耗散效率的加工安全区集中在变形温度430~490℃、应变速率0.1~0.3 s-1的区域,该区域成形时合金主要发生动态再结晶。根据热加工图及微观组织分析,建议在温度440~480℃、应变速率0.1~0.2 s-1范围内选择6082铝合金热成形的工艺参数。  相似文献   

18.
通过Gleeble-3500 热模拟实验机在950~1150℃,应变速率为0.01~3s-1 条件下的近等温热模拟压缩实验,建立了NiPt 15合金的流变应力-应变曲线及其热加工图。分析了NiPt15合金不同变形阶段的功率耗散情况;阐明了NiPt15合金的损伤失稳机制;基于Prasad 动态材料模型获得了不同应变速率、温度条件下的能量耗散率和失稳系数;研究了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:(1)变形温度是影响曲线变化趋势及动态再结晶的主要因素,且变形温度越高,应变速率越低,动态再结晶越充分;(2)加工失稳机制主要包括局部塑性变形、剪切变形带以及开裂,随真应变的增大先发生局部塑性变形,而后由剪切变形带取代,并最终向开裂演变;(3)NiPt15合金较为优异的加工实验条件主要集中在非失稳区,即变形参数1000~1100℃,0.03~0.1s-1以及1100~1130℃,0.01~0.03s-1范围内,并通过显微组织分析对热加工图进行了验证。  相似文献   

19.
采用Gleeble-3500对中碳钒微合金钢进行了高温压缩试验,研究了钢在900~1100℃、应变速率0.01~10 s-1的应力-应变数据。根据动态材料模型(DMM),基于Murty失稳判据建立了该钢的热加工图,分析了钢的流变失稳行为和微观组织。结果表明:合适的热加工区域是0.1~0.18 s-1应变速率、980~1000℃变形温度。失稳区是900~1010℃、0.18~10 s-1和1030~1100℃、0.02~0.20 s-1。材料热加工图与材料动态再结晶的形核和长大有关。  相似文献   

20.
采用Gleeble-1500D热模拟试验机,对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的变形行为(流变应力和显微组织)进行研究。根据动态材料模型计算并分析该合金的热加工图,并结合变形显微组织观察确定该合金在实验条件下的高温变形机制及加工工艺。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能(Q)为392.5 kJ/mol,同时利用逐步回归的方法建立该合金的流变应力方程。利用热加工图确定热变形的流变失稳区,并且获得了实验参数范围内热变形过程的最佳工艺参数:温度范围为750~850℃,应变速率范围为0.001~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号