首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用搅拌铸造?热挤压工艺制备SiCp/2024铝基复合材料板材,研究该复合材料铸态、热挤压态和热处理态的显微组织及力学性能。结果表明:SiC颗粒较均匀地分布于铸锭中,大部分SiC颗粒沿晶界分布,少数颗粒分布于晶内,晶界粗大的第二相呈非连续状分布;复合材料经热挤压变形后,显微孔洞等铸造缺陷明显消除,破碎的晶界第二相及SiC颗粒沿热挤压方向呈流线分布,复合材料的强度和塑性显著提高;对热挤压板材进行(495℃,1h)固溶处理+(177℃,8h)时效处理后,其抗拉强度达430MPa,此时的主要析出强化相为S′(Al2CuMg);热挤压变形有利于改善SiC颗粒与基体合金的界面结合,热处理SiCp/2024铝基复合材料的主要断裂方式为基体合金的延性断裂、SiC颗粒断裂和SiC/Al的界面脱粘。  相似文献   

2.
基于消失模铸造技术,以SiC_p增强铝基复合材料为研究对象,研究不同SiC_p浓度、粒度的磨削层断口磨粒的分布情况及基体与SiC_p磨粒的结合情况。结果表明,加入不同浓度与粒度的SiC_p不会影响复合材料基体的显微组织;随着SiC_p含量增大,基体与SiC_p间的结合并没受到影响;在相同颗粒粒度下,SiC_p含量越高,材料实际抗弯强度越小;在相同浓度下,随着SiC_p粒度变大,抗弯强度先增大后减小。结果表明,在含46目SiC_p粒度的复合材料,具有较高的抗弯强度。  相似文献   

3.
利用离心铸造结合搅拌复合法,在离心铸造机转速为800r/min,浆料温度为850、850、800、800℃,对应的模具温度分别为600、500、600、500℃的条件下,制备了SiCp增强铝基复合材料活塞。研究了浆料温度和模具温度对SiCp偏聚分离的影响。结果发现,浆料温度和模具温度越高,SiCp偏聚效果越明显。此外还研究了4种工艺条件下活塞的硬度和耐磨性特点,SiCp偏聚区硬度比基体高,改善了活塞的耐磨性。  相似文献   

4.
采用搅拌铸造法制备了体积分数为6%的SiCp/6061复合材料。通过高温蠕变试验、金相观察(OM)、断口形貌扫描(SEM)及能谱分析(EDS),研究其不同温度下的蠕变性能并分析蠕变断裂机制。结果表明:温度对SiCp/6061铝基复合材料的高温蠕变性能有很显著的影响,温度越高,蠕变性能越差;在250℃、80 MPa的应力下,SiCp/6061铝基复合材料的蠕变寿命约为14 h,而6061铝合金经280 min即发生断裂。由此可以认为,SiCp/6061铝基复合材料比基体合金具有更好的抗高温蠕变能力;复合材料的蠕变断裂机制是首先沿SiCp/Al界面产生塑性撕裂的裂纹源,微裂纹沿晶界扩展,最终发生断裂。  相似文献   

5.
研究了含量为20%的SiC颗粒增强ZL111铝基复合材料锭重熔后,挤压铸造件的组织和性能。结果表明,可以采用卧式挤压铸造方法制备铝基复合材料铸件,浇注温度为710℃,挤压冲头速度为0.4m/s,比压为135MPa;组织内SiC颗粒分布仍然保持分散,没有发生团聚,铸件不同部位SiC含量基本一致;但是SiC颗粒只分布在共晶组织内;铸件耐磨性显著提高,导致切削加工刀具磨损急剧增加,但布氏硬度(HB)为76.7~94.4,与ZL111铝合金相差不多。  相似文献   

6.
通过半固态机械搅拌法和近液相线法制备了SiC_p(μm级)质量分数为3%的ZL101铝合金半固态坯料,对坯料二次加热后挤压获得SiC_p/ZL101铝基复合材料。研究了固溶和时效处理对复合材料显微组织和性能的影响。结果表明,挤压铸造制备的SiC_p/ZL101复合材料显微组织由近球形的α-Al、长条状的共晶Si组织,以及多边形的SiC颗粒组成。经过固溶处理后,共晶Si转变为近球状;时效处理后,基体和第二相界面的析出相数量增加,复合材料的抗拉强度、屈服强度和伸长率分别达到320 MPa、244 MPa和6.91%,显微硬度(HV)为114,复合材料的断裂形式由微孔聚集型断裂转变为准解理断裂。  相似文献   

7.
原位反应铸造半固态7075铝基复合材料的组织   总被引:1,自引:0,他引:1  
采用原位反应液相线铸造方法制备了含有不同体积分数TiC颗粒的7075半固态铝基复合材料,通过光学显微镜和透射电镜观察其铸态组织,并利用平均截线法测量晶粒尺寸,研究原位颗粒对液相线铸造半固态铝合金组织的影响。结果发现,原位TiC颗粒对半固态铝合金的铸态组织产生细化和球化作用,当原位TiC颗粒体积分数达到2.5%时,材料能够得到等轴晶组织,对应的平均晶粒尺寸为35.6μm。  相似文献   

8.
采用自制的半固态流变性能测试装置,研究了SiC颗粒增强铝基复合材料的半固态流变性能,并对其微观组织进行了分析。结果表明,在SiC颗粒体积分数低于12%的条件下,SiC颗粒越多,材料的半固态流变性能越好。半固态微观组织分析表明,SiC颗粒的分布状况与复合材料的半固态的变形量有关。  相似文献   

9.
采用熔体搅拌技术制备了SiCp尺寸分别为20μm、20μm+50μm、50μm的10SiCp/6061复合材料,并在100MPa压力下挤压铸造成形,研究了颗粒尺寸对挤压铸造复合材料微观组织和力学性能的影响。结果表明,随着颗粒尺寸增加,10SiCp/6061复合材料的孔隙率不断降低,颗粒分布更加均匀,力学性能均逐渐降低,复合材料断裂模式由韧性断裂向韧脆混合断裂模式转变。  相似文献   

10.
采用半固态搅拌铸造法制备了SiC_p含量为17%的SiC_p/A357铝基复合材料,研究了搅拌温度、搅拌速度和搅拌时间对SiC_p分布均匀性的影响并进行了优化。结果发现,与液态搅拌相比,在铝合金半固态温度区间搅拌有利于减少吸气和促进SiC_p的均匀分布,但搅拌温度太低会使SiC_p在搅拌过程中被较大的初生相推挤到边界处,导致SiC_p分布不均匀;提高搅拌速度和延长搅拌时间可以提高SiC_p分布均匀性,但搅拌时间过长,SiC_p分布均匀性将变差。试验条件下优化后搅拌工艺参数:搅拌温度为610℃,搅拌速度为800r/min,搅拌时间为25min。制备的φ240mm×330mm、质量为41kg的大规格铝基复合材料铸锭组织中SiC_p分布均匀。  相似文献   

11.
探讨了挤压铸造SiCp/LY12复合材料的组织与性能特征及其相互之间的关系。研究表明,其基体组织晶粒细小, SiC颗粒基本呈均匀随机分布,无明显堆积及脱粘现象,且与基体结合良好。抗拉强度和弹性模量比基体材料分别提高 20%~32%和7.6%~43%,从而为颗粒增强金属基复合材料管、棒材的制备提供了一种减少工序,节能节材的可行方法。  相似文献   

12.
采用半固态机械搅拌法制备SiC_p含量(质量分数)高于40%的SiC_p/A356复合材料,测试了材料的密度,观察了材料的组织形貌特征。结果表明,粒度为15μm的SiC_p经过特殊处理后,可以制备SiC_p含量高于40%的SiC_p/A356复合材料,且无明显团聚现象;随着SiC_p含量从41%增加到43%,复合材料的密度从2.714g/cm3下降到2.615g/cm3,但下降趋势不完全呈线性关系。试验材料的增强相颗粒与基体结合良好,无明显的界面反应。采用半固态机械搅拌法制备SiC_p含量高于40%的SiC_p/A356复合材料是可行的。  相似文献   

13.
搅拌铸造SiC_p/A356复合材料的显微组织及力学性能   总被引:1,自引:0,他引:1  
采用搅拌铸造技术制备质量分数为15%的SiCp增强A356铝基复合材料,并对所制备的复合材料进行后续热挤压变形。通过金相观察(OM),扫描电镜(SEM)及力学性能测试等手段,对该复合材料显微组织与力学性能进行了研究。结果表明,所制备的复合材料铸态组织中,SiCp较均匀地分布于基体中,SiCp与Al界面处存在Si原子的富集;热挤压变形后,显微气孔等铸造缺陷明显减少,材料致密度显著提高,SiCp沿热挤压方向呈流线分布特征,颗粒均匀分散性明显提高;采用535℃×5h固溶+180℃×5h时效处理后,热挤压棒材的力学性能为:σs=370MPa,σb=225MPa,δ=5.3%,时效后析出强化相大小约为200nm,且弥散分布于基体中;断口分析表明,SiCp/A356铝基复合材料的断裂主要是由基体的塑性断裂及SiCp的断裂导致的。  相似文献   

14.
采用搅拌铸造方法制备颗粒尺寸为20~50 μm的SiCp/6061铝基复合材料,研究了SiC颗粒尺寸对6061铝基复合材料显微组织、拉伸力学性能和耐磨性能的影响.结果表明:通过搅拌铸造方法制备6061铝基复合材料,SiC颗粒在6061铝基复合材料中分布较为均匀,且随SiC颗粒尺寸增大,6061铝基复合材料中SiC颗粒的分布均匀性提高.SiC颗粒尺寸越小,6061铝基复合材料的抗拉强度和伸长率越高.在SiC颗粒尺寸为20μm时,6061铝基复合材料的抗拉强度和伸长率分别为296MPa、5.5%.随SiC颗粒尺寸增大,6061铝基复合材料的耐磨性能提高,磨损率逐渐下降.  相似文献   

15.
采用粉末半固态触变挤压工艺制备SiC含量为5%、10%和15%的2024铝基复合材料棒材,研究了真空烧结工艺和SiC颗粒含量对复合材料组织及性能的影响。结果表明,孔洞的存在对复合材料性能影响较大。经过真空处理的复合材料孔隙率比未经处理的减小65.3%,抗拉强度提高了9.7%。随着SiC含量的提高,复合材料的强度、硬度增加,塑性降低,SiC含量为15%的复合材料抗拉强度相比SiC含量为5%的复合材料提高了14.1%,伸长率则降低了51.9%,而且随着SiC含量的增加,脆性断裂趋势更加明显。  相似文献   

16.
为提高SiC_p/6061Al复合材料的性能,采用不同方法对SiC颗粒进行了表面处理,并通过直热烧结法制备了不同SiC表面改性状态的SiC_p/6061Al复合材料。研究表明:经过酸洗+高温氧化处理后SiC_p表面生成了一层Si O2膜,SiC_p的棱角发生钝化,颗粒形貌发生改变;经过碱洗+K_2ZrF_6处理后,SiC_p表面得到粗化,并在SiC_p表面析出K_2ZrF_6。对SiC_p进行不同表面处理后,制得的SiC_p/6061Al复合材料的性能都得到很大改善,而且碱洗+K_2ZrF_6处理这种表面处理方法对复合材料性能的改善效果最佳。  相似文献   

17.
利用机械搅拌法在液态下将玻璃颗粒分散于金属铝液中,制备了玻璃/铝基复合材料。对该复合材料的复合工艺和常规力学性能进行了研究。结果表明:玻璃/铝基复合材料中,玻璃颗粒分布较均匀,与基体结合良好;同基体合金相比较,玻璃/铝基复合材料具有一定的强度,硬度和耐磨有很大的提高。  相似文献   

18.
以A357铝合金和SiC_p粉作为原料,采用双级搅拌桨在不同工艺参数下对SiC_p含量为20%的A357复合材料进行搅拌铸造,研究了不同工艺参数对SiC_p分布均匀性的影响。对制得的SiC_p/A357复合材料进行T6热处理,采用扫描电镜、硬度测试及拉伸试验,分析了热处理前后组织和力学性能的变化。结果表明,采用双级搅拌桨在搅拌温度为610℃,搅拌转速为800 r/min,搅拌时间为20 min下制备的复合材料中SiC_p分布均匀性最佳。经T6热处理后,复合材料的抗拉强度和硬度明显上升,抗拉强度达到345 MPa,硬度(HB)为123.3,相比铸态分别提高66%和48.6%。断口分析表明,SiC_p/A357复合材料的断裂机制为界面脱粘、Si C颗粒的断裂和基体合金的韧性断裂的混合机制。  相似文献   

19.
用电化学方法和浸泡试验研究了SiC颗粒粒度和体积分数对SiCp/ 2 0 2 4Al铝基复合材料在 3.5 %NaCl水溶液中耐蚀性的影响 ,作为比较对 2 0 2 4Al的耐蚀性也进行了研究。结果表明 ,与基体相比 ,SiCp/ 2 0 2 4Al复合材料并不增加点蚀敏感性 ,其抗蚀性与SiC体积分数和粒度有关 ,SiC颗粒体积分数低或粒度高的复合材料 ,其抗蚀性往往大。  相似文献   

20.
对用流变铸造方法制备的含石墨、SiC及SiO_2的铝基复合材料的金相组织、断口形态及磨损表面特征进行了观察和研究。复合料浆在凝固过程中,α固溶体,Si,CuAl_2及它们的共晶在外加粒子表面形核并长大。由于采用对复合料浆在浇注前迅速升温工艺,粒子短距离运动就可达到均匀分布。复合材料中外加粒子周围有一过渡层与基体连接,同时粒子表面又不同程度富集着活性元素Mg,因而粒子与基体之间结合良好,断裂及磨损后,粒子与基体之间无间隙,无裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号