共查询到20条相似文献,搜索用时 0 毫秒
1.
Idalia Bilecka 《Electrochimica acta》2010,55(26):7717-7725
The development of nonaqueous and surfactant-free sol-gel routes to metal oxides has become a very active area within the broad field of nanoparticle research, opening up great opportunities to access a wide variety of binary, ternary and doped metal oxide nanoparticles with high crystallinity and well-defined particle morphologies — important parameters towards their application in electrochemistry, (photo)catalysis or gas sensing. Extension to other classes of inorganic nanomaterials such as nitrides and sulfides and energy optimization of the processes by using dielectric heating represents two promising research directions. Remaining future challenges are not only the development of rational synthesis strategies, nanoparticle processing, assembly and patterning into functional and integrated structures, but also the optimization of the synthesis protocol with respect to energy efficiency and waste management. This review aims at giving both an overview of the current state of research as well as a discussion of the perspectives in the area of nonaqueous and/or non-hydrolytic sol-gel technology for the synthesis, processing and application of inorganic nanomaterials. 相似文献
2.
Over the past decade, the subject of “greener chemistry" and chemical processes has been emphasized. The “greener chemistry” improves environmental efficiency in reducing the consumption of resources and energy and achieving a stable economic development of the environment. Nanotechnology is investigating nanoscale materials that have applications in the area of biotechnology and nanomedicine alongside several other significant applications such as cosmetics, drug delivery, and biosensors. The different shapes and sizes of nanoparticles can be synthesized with physical, chemical, or biological methods. The tendency to produce nanomaterials, especially metal oxides, and use them, is increasing because of their exciting properties in the nanoscale. However, metal oxide nanoparticles produced by chemical methods have significant concerns due to hazardous and toxic chemicals and their environmental damage. The production of metal oxide nanoparticles using the principles of greener chemistry has found a special place in research. Increased awareness of greener chemistry and biological processes has necessitated using environmentally friendly methods for the production of non-toxic nanomaterials. Plants and polymeric materials as renewable and inexpensive sources have received particular attention to prepare nano biomaterials. The use of plants to synthesize metal oxide nanoparticles because of the non-use toxic pollutants is one of the environmentally friendly methods, and that's why this type of synthesis is called greener synthesis. In this review, we exhibit a total sight of greener synthesis methods for producing metal oxide nanoparticles and their medical applications. 相似文献
3.
一维纳米材料是指仅长度为宏观尺度,其他方向为纳米尺度的新型材料,在光电子、生物医用、纳米传感、纳米储能等诸多领域具有潜在的应用前景,已成为21世纪化学、物理学、材料学及生命科学等科技领域的研究热点。本文介绍了一维纳米材料的制备方法,阐述了一维纳米材料各种生长机理,总结了一维纳米材料的表征方法,及在物理、化学、机械、材料等领域的应用。 相似文献
4.
Synthesis, characterization, and application of 1-d cerium oxide nanomaterials: a review 总被引:1,自引:0,他引:1
The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D) ceria (CeO(2)) nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO(2) nanomaterials. 相似文献
5.
Behrouz Elahi Mahdi Mirzaee Majid Darroudi Reza Kazemi Oskuee Kayvan Sadri Mohammad Sadegh Amiri 《Ceramics International》2019,45(4):4790-4797
Cerium oxide nanoparticles (CNPs) with desired particle size and spherical morphology were prepared from cerium nitrate in bio media of Salvia macrosiphon Boiss seeds extract, as a green synthesis route. Then they were characterized by XRD, UV–Vis and FTIR spectroscopies, FESEM and TGA. Band gap energy of the prepared powders was also determined which was found in the range of 2.5–3.5?eV. Determination of DLS and zeta potential were showed that CNPs had the small size and unique colloidal stability, respectively. Then the photo-catalytic activity of them was investigated by degradation of Rhodamine B (RhB) dye as a model of waste water pollutants, under UV-irradiation and optimum conditions were evaluated. Results showed that decreasing the particle size increased the rate of photo-catalytic reaction remarkably but ascending the band gap energy, in contrast. The photo-catalytic mechanism was also studied by using different scavengers. 相似文献
6.
Yoonho Choi Myung-Jin Choi Song-Hyun Cha Yeong Shik Kim Seonho Cho Youmie Park 《Nanoscale research letters》2014,9(1):103
An eco-friendly approach is described for the green synthesis of gold nanoparticles using catechin as a reducing and capping agent. The reaction occurred at room temperature within 1 h without the use of any external energy and an excellent yield (99%) was obtained, as determined by inductively coupled plasma mass spectrometry. Various shapes of gold nanoparticles with an estimated diameter of 16.6 nm were green-synthesized. Notably, the capping of freshly synthesized gold nanoparticles by catechin was clearly visualized with the aid of microscopic techniques, including high-resolution transmission electron microscopy, atomic force microscopy, and field emission scanning electron microscopy. Strong peaks in the X-ray diffraction pattern of the as-prepared gold nanoparticles confirmed their crystalline nature. The catalytic activity of the as-prepared gold nanoparticles was observed in the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. The results suggest that the newly prepared gold nanoparticles have potential uses in catalysis. 相似文献
7.
《Ceramics International》2015,41(7):8680-8687
Green synthesis of multifunctional zinc oxide nanoparticles (ZnO Nps) was achieved employing water extract of Garcinia xanthochymus by solution combustion synthesis. The structure and morphology were determined by XRD, UV–visible and scanning electron microscopy studies. The ZnO Nps were evaluated for photoluminescence (PL), photocatalytic and antioxidant properties. The water extract was found to comprise significantly high amounts of polyphenols and flavonoids. Powder XRD studies indicate the formation of pure wurtzite structure with absorption maximum of 370 nm corresponding to band gap energy of 3.33 eV. SEM studies reveal the formation of spongy cave like structures. The PL spectra exhibited 4 emission edges at 397, 436, 556 and 651 nm upon excitation at 325 nm because of oxygen deficiencies and zinc interstitials. Nps exhibit remarkable photodegradation of methylene blue (MB) in presence of UV and sun light. They exhibit antioxidant activity by inhibiting the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. Therefore, the study reveals an efficient, ecofriendly and simple method for the green synthesis of multifunctional ZnO Nps. 相似文献
8.
《Ceramics International》2023,49(4):5613-5620
This study proposes a simple, effective, and environmentally friendly approach for the synthesis of zinc oxide/silver nanoparticles (ZnO/Ag NPs) using three different plant extracts. The plants used in this study were moringa oleifera (MO), mentha piperita (MP), and citrus lemon (CL). Characterizations of ZnO/Ag NPs were done using ultraviolet–visible spectroscopy (UV vis), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) along with energy dispersive spectroscopy (EDX), and fourier transform infrared spectroscopy (FTIR). In accordance with size distribution findings, ZnO/Ag NPs synthesized with MO have a narrow size distribution, with the average particle size being 119 ± 36 nm. Among these three reducing agent MO act as the best reducing agent. Moreover, the anticancer activity of silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and ZnO/Ag NPs synthesized with MO were demonstrated in human cervical cancer cells (HeLA). The results revealed that ZnO/Ag NPs demonstrate in vitro cell viability of 72%, 81%, and 84% using 2.5, 5, and 10 μgml?1of ZnO/Ag NPs for 24 h. While Ag NPs and ZnO NPs prepared with MO showed 50% and 60% cell viability using 2.5 μgml?1concentration for 24 h. This showed that the ZnO/Ag NPs act as a strong anticancer agent compared to Ag NPs and ZnO NPs. Overall, this research proposes a green synthesis approach for ZnO/Ag NPs with a wide range of potential uses, particularly in biomedicine. 相似文献
9.
10.
Antonius Herry Cahyana Agus Rimus Liandi Yoki Yulizar Yoga Romdoni Tio Putra Wendari 《Ceramics International》2021,47(15):21373-21380
Copper ferrite (CuFe2O4) is one of the most popular ferrite spinel semiconductors due to its superparamagnetic properties. In this study, CuFe2O4 nanoparticles were successfully prepared through green synthesis mediated by Morus alba L. leaf extract. Secondary metabolites, such as alkaloids and saponins, in Morus alba L. leaf extract acted as a weak base provider and as a capping agent in the formation of CuFe2O4. The crystal structure, grain morphology, particle size, and magnetic properties of the nanoparticles were investigated. X-ray diffraction (XRD) data confirms the formation of the CuFe2O4 phase with a cubic Fd-3ms space group. The nanoparticles mediated by Morus alba L. have a spherical shape with distributed particle sizes at 20–70 nm. In the evaluation of stability, the nanoparticles agglomerate with a zeta potential value of ?21.7 mV and have a soft ferromagnetic nature with Hc, Mr, and Ms values of 175.44 Oe, 1.75 emu/g, and 14.16 emu/g, respectively. The catalytic ability of CuFe2O4 nanoparticles in the Mannich reaction showed good catalyst performance with a yield of 83.83% at optimum conditions. Green synthesis using Morus alba L. leaf extract offers a more environmentally friendly and effective method for obtaining CuFe2O4 nanoparticles with good characteristics. 相似文献
11.
12.
Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency
Mehrdad Khatami Hajar Q. Alijani Hossein Heli Iraj Sharifi 《Ceramics International》2018,44(13):15596-15602
Synthesis and properties of a new zinc oxide nanostructure, and its antimicrobial applications are presented. The synthesis method was fast, clean and green using a natural sweetener (Stevia) extract. The synthesized nanoparticles had a rectangular shape with a size range of 10–90?nm. The antimicrobial activity of the biosynthesized nanoparticles in parasitic strain of Leishmaniasis major and bacterial strains of Staphylococcus aureus and Escherichia coli was studied. It was found that low concentrations of the nanoparticles are required for complete prevention of growth of these organisms in vitro. 相似文献
13.
Lin-Bao Luo Xian-He Wang Chao Xie Zhong-Jun Li Rui Lu Xiao-Bao Yang Jian Lu 《Nanoscale research letters》2014,9(1):637
In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices. 相似文献
14.
AbstractZero-valent iron nanoparticles (NZVI-NPs) possess significantly high surface area and volume ratio, and this unique surface characteristic has enhanced reactivity to their adsorption potential. In this work, a bio-matter (Olive leaves extract) is deployed as a nature-inspired reducing agent for the synthesis of NZVI-NPs. The particle size of NZVI-NPs has been determined using particle sizer. The NZVI-NPs are characterized using analytical and morphological techniques such as ultraviolet???visible spectroscopy (UV???vis), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET), and Fourier transform infrared (FTIR) spectroscopy. The average crystalline size of NZVI-NPs are around 30–60?nm while maximum adsorption is at 225?nm. XRD spectrum shows two distinctive diffraction peaks at 25.40° and 42.50° corresponding to lattice plane value indexed at (200) and (222) planes of faced centered cubic (FCC). At optimized experimental conditions, NZVI-NPs show 97% removal efficiency of Ni+2 ions from aqueous solution. The equilibrium time has been found to be 55?min and the monolayer maximum adsorption capacity is 139.5?mg/g. Kinetically, Ni+2 ions adsorption has been modelled using various physical isotherms and the data best fitted Freundlich isotherm model and pseudo-first-order kinetic; revealing a maximum adsorption capacity of 139.5?mg/g at 25?±?3?°C and pH of 6.5. Desorption tests affirm the possibility of recovering reasonable amount of NZVI-NPs after used. The specific surface area of the NZVI-NPs sample measured by BET analysis is 21.9967 m2/g indicating a high adsorption capacity. 相似文献
15.
A forced-flow reactor has been designed for the synthesis of nanocrystalline AlN via in situ and ex situ nitridation of aluminum. Various reactor parameters, including evaporation temperature, microwave plasma generation, reactor pressure, gas flow rate, nitriding gas, carrier gas, and crucible purge, have been examined and optimized. Fully nitrided powders with crystallite sizes of 10–100 nm and surface areas of 45–370 m2 /g were produced using these techniques. These ultrafine AlN particles were highly moisture-sensitive, but they could be processed and handled without exposure to air to achieve fully dense materials with low oxygen content. 相似文献
16.
Green sonochemical synthesis of cupric and cuprous oxides nanoparticles and their optical properties
Nanoparticles of cupric oxide (CuO) and cuprous oxide (Cu2O) with various morphologies were synthesized by a green sonochemical process without any surfactants and templates. The Cu2O nanoparticles with the truncated cubic, cubic octahedral and octahedral morphologies were prepared via the deoxidation of the CuO nanoparticles. The Cu2O and CuO samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible absorption spectroscopy (UV–vis). The experimental results indicate that the molar ratio of sodium hydroxide to copper sulfate affects the morphology and size of the CuO and Cu2O nanoparticles produced by the sonication. The band gap energy of CuO nanoparticles was 1.45–1.75 eV, the morphology had a great effect on the optical properties of CuO. The Cu2O nanoparticles had broad emission peaks at the visible region, and the band gap energy was estimated to be 1.95–2.09 eV. The growth mechanisms of the CuO and Cu2O nanoparticles are discussed. 相似文献
17.
Nonisothermal Synthesis of Yttria-Stabilized Zirconia Nanopowder through Oxalate Processing: II, Morphology Manipulation 总被引:2,自引:1,他引:2
Oleg Vasylkiv Yoshio Sakka Hanna Borodians'ka 《Journal of the American Ceramic Society》2001,84(11):2484-2488
A novel, nontraditional route for controlling the morphology of yttria-stabilized zirconia nanopowders is explained. For understanding the real nature of yttrium zirconium oxalate nonisothermal decomposition and for the development of nanosize 3 mol% Y2 O3 ·97mol% ZrO2 , mass spectrometry, X-ray, and TEM investigation were used. Characteristics of zirconia crystallization under nonisothermal heating conditions were studied. Morphology evolution during Y-Zr oxalate nonisothermal decomposition was investigated to optimize the heating schedule of calcination. The nonlinear heating regime has been used to produce nanosized Y2 O3 -stabilized tetragonal ZrO2 powder with the finest primary crystallites and narrowest secondary aggregate size distribution. 相似文献
18.
Zhiwei Yang Yuan Huang Fanglian Yao Honglin Luo Yizao Wan 《Ceramics International》2018,44(17):20656-20663
The fast capacity fading at high current density turns out to be one of the key challenges limiting the broad applications of transition metal oxide-based electrodes. Herein, Fe2O3 nanoparticles with well-defined mesopores wrapped by reduced graphene oxide (RGO) have been synthesized via a facile hydrothermal strategy. The as-prepared nanocomposites were systematically characterized. XPS and Raman analyses confirm the co-existence of Fe2O3 and RGO in the nanocomposite system. SEM and TEM reveal that the mesoporous Fe2O3 nanoparticles have a size of 20–60?nm and are uniformly dispersed and tightly wrapped by RGO. When used as the anode in lithium ion batteries, the mesoporous-Fe2O3/RGO electrode exhibits excellent cycling stability (1098?mA?h?g?1 after 500 cycles at 1?A?g?1) and superior rate capability (574?mA?h?g?1 at 5?A?g?1). The excellent electrochemical performance can be mainly ascribed to the unique mesoscopic architecture that serves as a cushion to alleviate volume change of Fe2O3 during discharge/charge cycles, provides a sustainably large contact area with the electrolyte, and improves electrical conductivity. This unique nanocomposite electrode holds great potential as an anode material for advanced lithium ion batteries. 相似文献
19.
《Ceramics International》2023,49(2):2388-2393
In recent decades, nanoparticle synthesis has been used for various physical and chemical methods. However, different toxic chemicals are used during this synthesis process to address these concerns, which has multiple effects on environmental toxicity and high cost. To avoid these problems, we need a cost-effective and environmentally friendly approach. In this study, green synthesis was used to make tin oxide (SnO2) and ferrous doped tin oxide (SFO) nanoparticles (NPs) from Morinda citrifolia leaf extracts. The X-ray diffraction patterns of SnO2 and SFO NPs reveal a tetragonal crystalline structure. From the FESEM image of synthesized SnO2 and SFO NPs, their spherical structure and chemical composition were identified by EDX spectrum. Through the DLS spectrum, the hydrodynamic size was observed at 66 and 61 nm for SnO2 and SFO NPs, respectively. In the FTIR spectrum, the O–Sn–O stretching vibration peak arises at (606 & 509 cm?1 for SnO2 NPs) and (613 & 538 cm?1 for SFO NPs). Photoluminescence is used in materials to detect surface defects and impurity levels. The antibacterial activity of the SnO2, SFO NPs, and conventional antibiotics like amoxicillin NPs is effectively inhibited against S. aureus and E. coli bacterial strains. SFO NPs exhibit a higher antibacterial activity as compared to SnO2 and amoxicillin. The anticancer efficacy of increased SFO NPs compared to SnO2 NPs was tested against (MDA-MB-237) human breast cancer cells. These results suggest that Fe ions modified SnO2 NPs could be used in healthcare industrial applications to improve human health. 相似文献
20.
Hirokazu Kikuchi Sho Nakahara Takaaki Tomai Kazuo Terashima 《The Journal of Supercritical Fluids》2010,55(1):325-332
A two-dimensional, sheet-like dielectric barrier discharge microplasma that can be generated in supercritical fluids was developed. With this type of plasma, generated in supercritical xenon, nanocrystalline diamonds and diamondoid-like sp3 bonded nano-hydrocarbons were synthesized by using adamantane as a precursor and seed. Pressure and temperature were set close to the critical point of xenon at 6.3 MPa and 290.2 K, respectively. The peak-to-peak voltage for microplasma generation was between 3.4 and 7.1 kV, at a frequency of 10 kHz and the power consumption of the microplasma determined from the I-V measurements reached about 30 mW. Transmission electron microscopy analysis of the lattice of the synthesized particles revealed crystal structures similar to those observed in nanodiamonds, while micro-Raman spectra yielded features also found in Raman and ab initio computational studies of diamondoids. 相似文献