首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以氢氧化钠和碳酸钠混合碱为沉淀剂,金属硝酸盐为原料,共沉淀法合成了中温固体氧化物燃料电池阴极材料La0.7Sr0.3-xCaxCo1-yFeyO3-δ(简称:LSCCF,x=0.05、0.10、0.15、0.20;y=0.10、0.20、0.40)的前躯体.讨论了共沉淀的最佳pH值范围以及加料顺序,TG-DSC研究了LSCCF粉料的形成过程,XRD和SEM对其前驱体在600℃,800℃,1000℃煅烧4h后的晶体结构和粒度形貌进行了研究和表征;并通过与固相合成LSCCF的条件比较可知:pH值在9.1~9.5范围内,反向滴定共沉淀法得到的前驱体在800℃煅烧4h可以合成出纯度高、组份均匀的单一钙钛矿相的LSCCF粉料.使用直流四极探针法在空气气氛下研究不同烧结温度下LSCCF样品从100℃到800℃时的电导率发现:电导率随着烧结温度的升高在增大;随着x从0.05到0.20以及y从0.10到0.40,1200℃烧结3h后样品的电导率却在减少;当x=0.10或0.15时,Ca2+和Sr2+掺杂对电导率产生"混合"效应,致使其值基本相等.且在500~800℃范围所有样品的电导率都超过了100S/cm.合成的阴极材料LSCCF与电解质Ce0.8Sm0.2O2两者间有良好的相容性.  相似文献   

2.
分别采用凝胶浇注法和甘氨酸–硝酸盐法制备La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)粉体与Sm0.2Ce0.8O1.9(SDC)粉体,随后制备出不同比例的LSCF–SDC复合阴极。用X射线衍射分析粉体的化学稳定性,用扫描电子显微镜观察复合阴极的微观结构,在500~800℃范围内测量其热膨胀系数和电导率。采用丝网印刷法将LSCF–SDC涂覆在SDC电解质片上,在1100℃烧结4h。用交流阻抗法在600~800℃范围内测量不同成分的LSCF–SDC复合阴极和SDC电解质的交流阻抗谱。结果表明:LSCF和SDC粉体具有良好的化学相容性,烧结体具有多孔结构,LSCF–SDC复合阴极与SDC电解质可形成良好的接触界面。SDC的加入在降低阴极材料的热膨胀系数的同时还保持了其本身较高的电导率,在中温范围内,电导率达到500S/cm以上。复合阴极的极化电阻随着SDC的含量增加而减小,当SDC含量为30%时,复合阴极的极化电阻最小,在700℃空气中测试得到的界面电阻为0.32Ω·cm2。  相似文献   

3.
采用甘氨酸-硝酸盐法(glycine-nitrate process,GNP)合成中温固体氧化物燃料电池(intermediate temperature solid oxide fuel cell,IT-SOFC)的阴极材料SmBaCo2O5+δ(SBCO)。利用X射线衍射仪和扫描电镜对材料的化学稳定性和微观结构进行表征。结果表明:SBCO与电解质Sm0.2Ce0.8O1.9(SDC)的化学相容性良好,电极在1050℃焙烧5h后,SBCO与SDC之间接触良好。SBCO的电导率在500~800℃达到1231~763S/cm。以SDC为电解质,阴极材料SBCO在750℃时的极化电阻为0.073?·cm2。在800℃条件下,当阴极过电位为49mV时,SBCO阴极的电流密度达到172.14mA/cm2,可作为IT-SOFC较为理想的阴极材料。  相似文献   

4.
郑颖平  查燕  高文君 《化工时刊》2007,21(11):25-27
以硝酸盐为前驱体合成了具有钙钛矿结构的中温固体电解质La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)。用XRD和SEM分析了样品钙钛矿相的形成过程和显微结构,用直流四电极法测试了电解质的氧离子电导率。研究结果表明:经1 450℃煅烧6 h后得到LSGM单相结构,800℃时的电导率为6.8×10-2S.cm-1,高于同温下钇稳定氧化锆(YSZ)样品的电导率,表明LSGM更适合做中温固体氧化物燃料电池(SOFC)的电解质材料。  相似文献   

5.
制备方法对Pr0.6Sr0.4FeO3-δ结构与性能的影响   总被引:1,自引:0,他引:1  
采用甘氨酸-硝酸盐、Pechini、柠檬酸-硝酸盐以及尿素-硝酸盐等4种不同的湿化学方法,制备了Pr0.6Sr0.4FeO3-δ复合氧化物粉体.用X射线衍射分析了材料中钙钛矿物相的形成过程及其与中温电解质的化学相容性.用扫描电镜研究了样品的微结构.结果表明:不同方法得到的素坯经1 000℃煅烧2 h即形成钙钛矿结构的固溶体.Pechini法制备的非晶产物煅烧后钙钛矿物相的纯度最高.素坯经1200℃煅烧2 h,所得陶瓷体的总气孔率均为43%~49%;体积密度以柠檬酸-硝酸盐法粉体的样品最高,甘氨酸-硝酸盐法最低.在室温到800℃的温度范围内,Pechini法制备的陶瓷体的热膨胀系数为12.15×10-6/K,与电解质Sm0.2Ce0.8O1.9(SDC)及La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM)的数值一致.X射线衍射揭示产物与中温电解质SDC及LSGM具有良好的化学相容性.  相似文献   

6.
采用甘氨酸-硝酸盐、Pechini、柠檬酸-硝酸盐以及尿素-硝酸盐等4种不同的湿化学方法,制备了Pr0.6Sr0.4FeO3-δ复合氧化物粉体.用X射线衍射分析了材料中钙钛矿物相的形成过程及其与中温电解质的化学相容性.用扫描电镜研究了样品的微结构.结果表明不同方法得到的素坯经1 000℃煅烧2 h即形成钙钛矿结构的固溶体.Pechini法制备的非晶产物煅烧后钙钛矿物相的纯度最高.素坯经1200℃煅烧2 h,所得陶瓷体的总气孔率均为43%~49%;体积密度以柠檬酸-硝酸盐法粉体的样品最高,甘氨酸-硝酸盐法最低.在室温到800℃的温度范围内,Pechini法制备的陶瓷体的热膨胀系数为12.15×10-6/K,与电解质Sm0.2Ce0.8O1.9(SDC)及La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM)的数值一致.X射线衍射揭示产物与中温电解质SDC及LSGM具有良好的化学相容性.  相似文献   

7.
采用共沉淀法、柠檬酸盐法、微波固相烧结法合成了La0.7Sr0.15Ca0.15Co0.9Fe0.1O3-δ(简:LSCCF)复合氧化物。借助XRD和SEM对不同制备方法合成粉料的晶体结构和粒度形貌进行了研究。实验结果表明:三种方法均可制得单一钙钛矿结构的LSCCF氧化物。柠檬酸盐法制得粉料的粒度最小,微波烧结法制备的粉料的分散性最好。在空气气氛下使用直流四极探针法研究了LSCCF烧结样品从100℃到800℃时的电导率,发现该体系材料的导电机制符合p型小极化子绝热孔隙理论,当温度小于655℃,其电导率主要受指数形式控制且随温度增大而达到最大值;当温度大于655℃,其电导率由预指数因子决定且随着温度的升高而降低,在600℃-800℃范围的电导率都超过了500s·cm-1,满足中温固体氧化物燃料电池(ITSOFCs)阴极材料的要求。不同制备方法合成粉料的粒度、分散性和晶胞参数决定了电导率的大小,其影响次序为柠檬酸盐法>微波烧结法>共沉淀法。  相似文献   

8.
缓冲溶液法制备钴酸锶钐阴极材料及其性能   总被引:1,自引:0,他引:1  
以硝酸盐为前驱体,NH3·H2O-NH4HCO3为沉淀剂,用缓冲溶液法制得了Sm1-xSrxCoO3复合沉淀物,将其在800~1 000℃不同温度煅烧5 h.用X射线衍射、透射电镜对煅烧产物的相组成和微观形貌进行了测定.所制备的(Sm1-xSrxCoO3)粉体模压成形后,在1 000~1 200℃进行烧结.用Archimedes排水法测定了烧结体的密度和孔隙率.用扫描电镜对烧结体的微观结构进行了观测.用直流四端子法测定了烧结样品的电导率.实验结果表明:缓冲溶液法所获得的沉淀物在800℃煅烧形成了具有钙钛矿结构的Sm1-xSrxCoO3粉体,其粒度均匀细小,形状规则.在一定的烧结温度,Sm1-xSrxCoO3烧结体具有多孔结构.随着烧结温度的增加,烧结体密度增大,孔隙率和孔径减小.Sr的掺入,使Sm1-xSrxCoO3烧结体的电导率明显高于未掺杂的SmCoO3.在500~800℃,Sm1-xSrxCoO3材料的电导率随温度的增高而降低.在500℃,样品Sm0.6Sr0.4CoO3的电导率可达2 700 S·cm-1.  相似文献   

9.
采用共沉淀法、柠檬酸盐法、微波固相烧结法合成了La0.7Sr0.15Ca0.15C00.9Fe0.1O3-δ(简:LSCCF)复合氧化物。借助XRD和SEM对不同制备方法合成粉料的晶体结构和粒度形貌进行了研究。实验结果表明:三种方法均可制得单一钙钛矿结构的LSCCF氧化物。柠檬酸盐法制得粉料的粒度最小,微波烧结法制备的粉料的分散性最好。在空气气氛下使用直流四极探针法研究了LSCCF烧结样品从100℃到800℃时的电导率,发现该体系材料的导电机制符合p型小极化子绝热孔隙理论,当温度小于655℃,其电导率主要受指数形式控制且随温度增大而达到最大值;当温度大于655℃,其电导率由预指数因子决定且随着温度的升高而降低.在600℃-800℃:范围的电导率都超过了500s.cm^-1,满足中温固体氧化物燃料电池(ITsoFcs)阴极材料的要求。不同制备方法合成粉料的粒度、分散性和晶胞参数决定了电导率的大小,其影响次序为柠檬酸盐法>微波烧结法>共沉淀法。  相似文献   

10.
机械力化学法制备LiNi0.5Mn1.5O4粉体的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以Li2CO3,MnO2和Ni(OH)2·H2O为原料,采用机械力化学法制备锂离子层状结构正极材料LiNi0.5Mn1.5O4,采用X射线衍射,扫描电镜对其结构和形貌进行了表征.结果表明粉磨6 h可制备能在较低温度下发生固相反应的前驱体;前驱体于800℃煅烧6 h制备得到具有α-NaFeO2型层状有序结构的单相LiNi0.5Mn1.5O4.样品的首次放电容量为80 mAh·g-1.  相似文献   

11.
新型电解质材料La9.33Ge6O26的制备及性能   总被引:1,自引:0,他引:1  
用柠檬酸和乙二醇做络合剂和燃料,硝酸盐做氧化剂,用氨水调节溶胶的pH值,通过溶胶-凝胶-自燃烧法合成了可用于固体氧化物燃料电池(solid oxide fuel cell,SOFC)的新型固体电解质La9.33Ge6O26。通过对样品相关性能的研究发现:1150℃为较佳的烧结温度,此温度制备的La9.33Ge6O26具有高的离子电导率(σ800℃=2.6×10-2S/cm)、低的电导活化能(Ea=0.89eV)、适中的热膨胀性能(从室温到1000℃的热膨胀系数α=9.2×10-6K-1)和良好的化学相容性,与阴极材料La0.6Sr0.4Co0.8Fe0.2O3-δ一起高温煅烧(800℃)50h没有发生界面化学反应。  相似文献   

12.
采用甘氨酸-硝酸盐法(GNP)合成SmBaCo2O5+δ(SBCO)阴极材料和Ce0.8Sm0.2O1.9(SDC)电解质材料,制备不同比例的SBCO-SDC复合阴极,考察SDC含量对复合阴极的热膨胀、电导率和电化学性能的影响。结果表明,SBCO与SDC在1100℃混合煅烧未发生明显的化学反应,两者之间具有良好的化学相容性。SDC的加入可有效改善复合阴极的热膨胀性能,随着SDC含量的增加,SBCO-SDC复合阴极的热膨胀系数(TEC)逐渐减小,同时其电导率也逐渐下降。此外,SDC的加入导致SBCO-SDC复合阴极界面电阻(ASR)增加。当SDC含量为20%时,750℃测试的ASR为0.145Ω.cm2,500~800℃范围内电导率大于100 S.cm-1,满足IT-SOFC阴极材料的要求。  相似文献   

13.
采用柠檬酸–硝酸盐自蔓延燃烧法分别合成了双钙钛矿结构的SmBaCo2O5+δ(SBCO)阴极粉体和萤石型Sm0.2Ce0.8O1.9(SDC)电解质粉体,按3:2的质量比混合上述粉体研磨后得到复合阴极。利用X射线衍射仪研究化学相容性,直流四端子法测量电导率,热膨胀仪测量热膨胀系数;构建阳极支撑型单电池(Ni-SDC|SDC|SBCO-SDC)并进行了性能测试,用扫描电子显微镜观察电池的断面微结构,交流阻抗谱记录界面极化。结果表明:SBCO与SDC在1 000℃无相互作用;450~800℃,复合阴极的电导率在369~234 S/cm之间;SDC的加入降低了复合阴极的热膨胀系数;单电池具有理想的微观结构,阳极|电解质|阴极各界面彼此接触良好,650℃时极化电阻仅为0.031.cm2;以H2为燃料气(含体积分数3%水蒸气),空气为氧化剂,650℃时电池的开路电压为0.77 V,输出功率最大值为640 mW/cm2。预示着SBCO-SDC是中温固体氧化物燃料电池有潜力的阴极材料。  相似文献   

14.
采用柠檬酸自蔓延燃烧法合成了Sr0.95Ti0.05Co0.95O3-δ(STC)阴极粉体和Sm0.2Ce0.8O1.9(SDC)电解质粉体,将STC与SDC粉体按质量比7:3混合得到复合阴极。通过X射线衍射(XRD)、直流四端子法和热膨胀仪表征了样品的化学相容性、电导率和热膨胀系数。XRD表明,STC在900℃能够得到立方纯钙钛矿结构,复合阴极STC-SDC在工作温度区间内具有很好的化学相容性;在650℃空气气氛下STC-SDC与SDC之间的界面极化阻抗仅为0.05Ω·cm2。制备了阳极支持型(Ni O-SDC│SDC│STC-SDC)单电池,在450~650℃范围内以湿润的H2(3%水蒸汽)为燃料气,空气为氧化剂测试了单电池的性能。结果表明:阳极支撑的单电池共烧1 350℃可以得到致密的电解质层和多孔的电极,而且650℃时单电池开路电压0.82V,最大输出功率为721 m W/cm2。结果预示,在以SDC为电解质的中低温固体氧化物燃料电池(IT-SOFC)中,STC-SDC是一个很有前途的复合阴极材料。  相似文献   

15.
通过柠檬酸络合法合成了La_xSr_(2–x)MgMoO_(6–δ)(LSMM)阳极材料。利用X射线衍射和扫描电子显微镜分析样品的物相结构、微观形貌及与电解质的化学相容性,采用四端引线法测试材料的电导率,利用电化学工作站测试其阳极阻抗特性,并以La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_3(LSGM)为电解质、PrBaCo_2O_(5+δ)为阴极制备了单电池,测试功率密度。结果表明:空气中La的掺杂量小于0.2(摩尔分数)时,还原后La的掺杂量可以达到0.6,La的掺杂导致晶胞体积增大。La掺杂的Sr_2MgMoO_6(SMMO)与电解质LSGM、Ce_(0.8)Gd_(0.2)O_(2–δ)(GDC)在1 250℃煅烧10 h,均没有杂质相生成,具有良好的化学相容性。La掺杂显著提高了SMMO的电导率,800℃、5%H2/Ar气氛中,La_(0.6)Sr_(1.4)MgMoO_(6–δ)的电导率为40 S/cm。La的掺杂降低了阳极材料的极化电阻,提高了电池功率密度。  相似文献   

16.
采用柠檬酸-硝酸盐自蔓延燃烧法合成了LaFe1-xCuxO3-δ(LFC)阴极粉体和Gd0.1Ce0.9O2-δ(GDC)电解质粉体,构建了对称固体氧化物燃料电池LFC/GDC/LFC。利用X射线衍射法(XRD)研究LFC材料的物相结构以及与电解质GDC的化学相容性,采用直流四端子法测试了阴极的电导率,采用交流阻抗法记录界面极化行为,通过扫描电子显微镜(SEM)观察对称电池的断面微观结构。结果表明:合成的LFC粉体(x≤0.2)均呈现单一的钙钛矿结构,且与电解质GDC在低于900℃具有良好的化学相容性;B位掺杂Cu元素能够提高阴极材料的电导率,700℃左右在x=0.2时其电导率最大为104 S·cm-1;极化阻抗随着Cu2+掺杂量的增加而减小,x=0.2时在750℃空气气氛下的电极与电解质间的极化阻抗Rp最小为0.237Ω·cm2。  相似文献   

17.
放电等离子烧结制备Ca3Co4O9陶瓷及其电学性能   总被引:1,自引:0,他引:1  
采用化学共沉淀与放电等离子烧结相结合的方法制备了Ca3Co4O9陶瓷.通过X射线衍射,红外光谱仪,扫描电镜等表征手段,探讨了Ca3Co4O9的形成过程,研究了不同制备工艺对陶瓷的物相,显微结构和性能的影响.实验结果表明共沉淀前驱物800℃预烧6 h或8 h后,再经放电等离子850℃,压力30 MPa下烧结5 min,可以获得纯相Ca3Co4O9陶瓷;800℃预烧6 h的烧结体密度为4.53 g/cm3,800℃预烧8 h的烧结体密度为4.78 g/cm3;前驱物预烧8 h后再经放电等离子烧结的块体具有较好的电学性能.700℃时,电阻率为8.30×10-5 Ωm,Seebeck系数为182μV/K.电导率和Seebeck系数在目前Ca-Co-O材料中是较高的.  相似文献   

18.
以Ce(NO3)3·6H2O、Sm2O3和Sc2O3等为原料,采用凝胶浇注法制备出了不同组成的Ce0.8Sm0.2–xScxO2–δ(CSSO)粉体,并压制、烧结制得CSSO烧结体试样。对所制备CSSO粉体的相结构及烧结体的致密度、电导率等进行了测试,考察了Sm2O3和Sc2O3共掺杂对Ce元素价态稳定性的影响。结果表明:凝胶浇注干凝胶在800℃煅烧3 h可获得具有单一萤石结构的CSSO粉体,其成形压坯经1 500℃烧结后相对密度可达97.13%;CSSO烧结体的电导呈P型导体特征,组成为Ce0.8Sm0.15Sc0.05O2–δ的烧结体试样的电导率最高,在600℃时可达1.92×10–2 S/cm。适量掺杂Sc可提高CSSO电解质在还原气氛中的稳定性。  相似文献   

19.
方道来 《化工时刊》2006,20(4):31-33
以氯化亚铁、乙酸锰、乙酸镍和草酸为原料,采用室温固相反应法制得FeNiMn(C2O4)3.nH2O复合草酸盐前驱体,将该前驱体在800℃煅烧2 h得到FeNiMnO4超细粉体。研究结果表明,由该法制得的复合氧化物粉体,化学组成精确,颗粒均匀细小,一次粒经为150 nm;烧结活性较高,在1150℃烧结5 h制得的FeNiMnO4陶瓷相对密度约98%。  相似文献   

20.
低温自燃烧法合成La2NiO4阴极材料及其性能   总被引:2,自引:2,他引:0  
以柠檬酸-硝酸盐溶液为前驱体,采用低温自燃烧法合成了具有K2NiF4结构的中温固体氧化物燃料电池La2NiO4阴极材料.研究了影响溶胶和凝胶的形成以及La2NiO4粉体晶相结构的影响因素,确定了最佳的合成条件.研究结果表明:自燃烧产物经1000 ℃煅烧2 h后,形成了平均粒径约为90 nm的单一La2NiO4相.经1300 ℃烧结的La2NiO4在100~800 ℃范围内平均热膨胀系数为13.9×10-6 K-1,在600~800 ℃范围内测得的总电导率为84.5~96.3 S·cm-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号