首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Despite numerous therapies, cancer remains one of the leading causes of death worldwide due to the lack of markers for early detection and response to treatment in many patients. Technological advances in tumor screening and renewed interest in energy metabolism have allowed us to identify new cellular players in order to develop personalized treatments. Among the metabolic actors, the mitochondrial transporter uncoupling protein 2 (UCP2), whose expression is increased in many cancers, has been identified as an interesting target in tumor metabolic reprogramming. Over the past decade, a better understanding of its biochemical and physiological functions has established a role for UCP2 in (1) protecting cells from oxidative stress, (2) regulating tumor progression through changes in glycolytic, oxidative and calcium metabolism, and (3) increasing antitumor immunity in the tumor microenvironment to limit cancer development. With these pleiotropic roles, UCP2 can be considered as a potential tumor biomarker that may be interesting to target positively or negatively, depending on the type, metabolic status and stage of tumors, in combination with conventional chemotherapy or immunotherapy to control tumor development and increase response to treatment. This review provides an overview of the latest published science linking mitochondrial UCP2 activity to the tumor context.  相似文献   

2.
The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.  相似文献   

3.
4.
Photodynamic therapy (PDT) has become an alternative to standard cancer treatment methods such as surgery, chemotherapy and radiotherapy. The uniqueness of this method relies on the possibility of using various photosensitizers (PS) that absorb and convert light emission in radical oxygen-derived species (ROS). They can be present alone or in the presence of other compounds such as metal organic frameworks (MOFs), non-tubules or polymers. The interaction between DNA and metal-based complexes plays a key role in the development of new anti-cancer drugs. The use of coordination compounds in PDT has a significant impact on the amount ROS generated, quantum emission efficiency (Φem) and phototoxic index (PI). In this review, we will attempt to systematically review the recent literature and analyze the coordination complexes used as PS in PDT. Finally, we compared the anticancer activities of individual coordination complexes and discuss future perspectives. So far, only a few articles link so many transition metal ion coordination complexes of varying degrees of oxidation, which is why this review is needed by the scientific community to further expand this field worldwide. Additionally, it serves as a convenient collection of important, up-to-date information.  相似文献   

5.
The emergence of resistance against antileishmanial drugs in current use necessitates the search for new classes of antileishmanial compounds. Herein we report the design, synthesis, and evaluation of a novel ferrocenylquinoline for activity against Leishmania donovani. 7‐Chloro‐N‐[2‐(1H‐5‐ferrocenyl‐1,2,3‐triazol‐1‐yl)ethyl]quinolin‐4‐amine ( 1 ) was generated by coupling an iron(II) ethynylferrocene species with 4‐(2‐ethylazido)amino‐7‐chloroquinoline using click chemistry. The synthesized compound 1 was tested for its antileishmanial activity using both promastigote and amastigote stages of L. donovani. Compound 1 showed promising anti‐promastigote activity, with an IC50 value of 15.26 μM and no cytotoxicity toward host splenocytes. From the battery of tests conducted in this study, it appears that this compound induces parasite death by promoting oxidative stress and depolarizing the mitochondrial membrane potential, thereby triggering apoptosis. These results suggest that ferrocenylquinoline 1 is a suitable lead for the development of new antileishmanial drugs.  相似文献   

6.
Diphenylene iodonium (DPI) is known for its inhibitory activities against many flavin- and heme-dependent enzymes, and is often used as an NADPH oxidase inhibitor. We probed the efficacy of DPI on two well-known drug targets, the human monoamine oxidases MAO A and B. UV-visible spectrophotometry and steady-state kinetics experiments demonstrate that DPI acts as a competitive and reversible MAO inhibitor with Ki values of 1.7 and 0.3 μM for MAO A and MAO B, respectively. Elucidation of the crystal structure of human MAO B bound to the inhibitor revealed that DPI binds deeply in the active-site cavity to establish multiple hydrophobic interactions with the surrounding side chains and the flavin. These data prove that DPI is a genuine MAO inhibitor and that the inhibition mechanism does not involve a reaction with the reduced flavin. This binding and inhibitory activity against the MAOs, two major reactive oxygen species (ROS)-producing enzymes, will have to be carefully considered when interpreting experiments that rely on DPI for target validation and chemical biology studies on ROS functions.  相似文献   

7.
Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.  相似文献   

8.
Oxidative stress is recognized as one of the primary processes underlying the initiation and progression of atherosclerotic vascular disease. Under physiological conditions, the balance between reactive oxygen species (ROS) generation and ROS scavenging is tightly controlled. As part of normal cellular metabolism, regulated oxidative stress is responsible for a variety of cellular responses. Excess generation of ROS that could not be compensated by antioxidant system has been suggested to be responsible for a number of pathological conditions. Due to their short biological half-lives, direct measurement of ROS is not available and surrogate measures are commonly used. Plasma lipoproteins, by virtue of their close interactions with endothelial cells in the vasculature and the susceptibility of their surface lipids to oxidative modification, are perfect biological sensors of oxidative stress in the arterial wall. In particular, with each consumed meal, triglyceride-rich lipoproteins, secreted by the intestine into the circulation, are responsible for the delivery of 20–40 grams of fat to the peripheral tissues. This flux of dietary lipids is accompanied by concomitant increases in glucose, insulin and other meal-associated metabolites. The contribution of postprandial lipemia to the pathogenesis of atherosclerosis has been previously suggested by several lines of investigation. We have extended this hypothesis by demonstrating the acute generation of oxidative epitopes on plasma lipoproteins as well as transient changes in the oxidative susceptibility of plasma lipoproteins.  相似文献   

9.
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM’s severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed “indirect evidence”). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.  相似文献   

10.
Despite continuous advancement in skin cancer therapy, the disease is still fatal in many patients, demonstrating the need to improve existing therapies, such as electrochemotherapy (ECT). ECT can be applied in the palliative or curative setting and is based on the application of pulsed electric fields (PEF), which by themselves exerts none to low cancer toxicity but become potently toxic when combined with low-dosed chemotherapeutics such as bleomycin and cisplatin. Albeit their favorable side-effect profiles, not all patients respond to standard ECT, and some responders experience tumor recurrence. To identify potential adjuvant or alternative agents to standard electrochemotherapy, we explored the possibility of combining PEF with a physiological compound, glutathione (GSH), to amplify anticancer toxicity. GSH is an endogenous antioxidant and is available as a dietary supplement. Surprisingly, neither GSH nor PEF mono treatment but GSH + PEF combination treatment exerted strong cytotoxic effects and declined metabolic activity in four skin cancer cell lines in vitro. The potential applicability to other tumor cells was verified by corroborating results in two leukemia cell lines. Strikingly, GSH + PEF treatment did not immediately increase intracellular GSH levels, while levels 24 h following treatment were enhanced. Similar tendencies were made for intracellular reactive oxygen species (ROS) levels, while extracellular ROS increased following combination treatment. ROS levels and the degree of cytotoxicity could be partially reversed by pre-incubating cells with the NADPH-oxidase (NOX) inhibitor diphenyleneiodonium (DPI) and the H2O2-degrading enzyme catalase. Collectively, our findings suggest a promising new “endogenous” drug to be combined with PEF for future anticancer research approaches.  相似文献   

11.
Glycogen storage diseases (GSDs) represent a model of pathological accumulation of glycogen disease in the kidney that, in animal models, results in nephropathy due to abnormal autophagy and mitochondrial function. Patients with Glycogen Storage Disease 1a (GSD1a) accumulate glycogen in the kidneys and suffer a disease resembling diabetic nephropathy that can progress to renal failure. In this study, we addressed whether urine-derived epithelial cells (URECs) from patients with GSD1a maintain their biological features, and whether they can be used as a model to study the renal and metabolic phenotypes of this genetic condition. Studies were performed on cells extracted from urine samples of GSD1a and healthy subjects. URECs were characterized after the fourth passage by transmission electron microscopy and immunofluorescence. Reactive oxygen species (ROS), at different glucose concentrations, were measured by fluorescent staining. We cultured URECs from three patients with GSD1a and three healthy controls. At the fourth passage, URECs from GSD1a patients maintained their massive glycogen content. GSD1a and control cells showed the ciliary structures of renal tubular epithelium and the expression of epithelial (E-cadherin) and renal tubular cells (aquaporin 1 and 2) markers. Moreover, URECs from both groups responded to changes in glucose concentrations by modulating ROS levels. GSD1a cells were featured by a specific response to the low glucose stimulus, which is the condition that more resembles the metabolic derangement of patients with GSD1a. Through this study, we demonstrated that URECs might represent a promising experimental model to study the molecular mechanisms leading to renal damage in GSD1a, due to pathological glycogen storage.  相似文献   

12.
Natural products containing the α,β‐unsaturated δ‐lactone skeleton have been shown to possess a variety of biological activities. The natural product (?)‐tarchonanthuslactone ( 1 ) possessing this privileged scaffold is a popular synthetic target, but its biological activity remains underexplored. Herein, the total syntheses of dihydropyran‐2‐ones modeled on the structure of 1 were undertaken. These compounds were obtained in overall yields of 17–21 % based on the Keck asymmetric allylation reaction and were evaluated in vitro against eight different cultured human tumor cell lines. We further conducted initial investigation into the mechanism of action of selected analogues. Dihydropyran‐2‐one 8 [(S,E)‐(6‐oxo‐3,6‐dihydro‐2H‐pyran‐2‐yl)methyl 3‐(3,4‐dihydroxyphenyl)acrylate], a simplified analogue of (?)‐tarchonanthuslactone ( 1 ) bearing an additional electrophilic site and a catechol system, was the most cytotoxic and selective compound against six of the eight cancer cell lines analyzed, including the pancreatic cancer cell line. Preliminary studies on the mechanism of action of compound 8 on pancreatic cancer demonstrated that apoptotic cell death takes place mediated by an increase in the level of reactive oxygen species. It appears as though compound 8 , possessing two Michael acceptors and a catechol system, may be a promising scaffold for the selective killing of cancer cells, and thus, it deserves further investigation to determine its potential for cancer therapy.  相似文献   

13.
The high prevalence of diabetes mellitus and its increasing incidence worldwide, coupled with several complications observed in its carriers, have become a public health issue of great relevance. Chronic hyperglycemia is the main feature of such a disease, being considered the responsible for the establishment of micro and macrovascular complications observed in diabetes. Several efforts have been directed in order to better comprehend the pathophysiological mechanisms involved in the course of this endocrine disease. Recently, numerous authors have suggested that excess generation of highly reactive oxygen and nitrogen species is a key component in the development of complications invoked by hyperglycemia. Overproduction and/or insufficient removal of these reactive species result in vascular dysfunction, damage to cellular proteins, membrane lipids and nucleic acids, leading different research groups to search for biomarkers which would be capable of a proper and accurate measurement of the oxidative stress (OS) in diabetic patients, especially in the presence of chronic complications. In the face of this scenario, the present review briefly addresses the role of hyperglycemia in OS, considering basic mechanisms and their effects in diabetes mellitus, describes some of the more commonly used biomarkers of oxidative/nitrosative damage and includes selected examples of studies which evaluated OS biomarkers in patients with diabetes, pointing to the relevance of such biological components in general oxidative stress status of diabetes mellitus carriers.  相似文献   

14.
Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).  相似文献   

15.
The results of Fe(2+)-induced decomposition of the clinically used artemisinins, artemisone, other aminoartemisinins, 10-deoxoartemisinin, and the 4-fluorophenyl derivative have been compared with their antimalarial activities and their ability to inhibit the parasite SERCA PfATP6. The clinical artemisinins and artemisone decompose under aqueous conditions to give mixtures of C radical marker products, carbonyl compounds, and reduction products. The 4-fluorophenyl derivative and aminoartemisinins tend to be inert to aqueous iron(II) sulfate and anhydrous iron(II) acetate. Anhydrous iron(II) bromide enhances formation of the carbonyl compounds and provides a deoxyglycal from DHA and enamines from the aminoartemisinins. Ascorbic acid (AA) accelerates the aqueous Fe(2+)-mediated decompositions, but does not alter product distribution. 4-Oxo-TEMPO intercepts C radicals from a mixture of an antimalaria-active trioxolane, 10-deoxoartemisinin, and anhydrous iron(II) acetate to give trapped products in 73 % yield from the trioxolane, and 3 % from the artemisinin. Artemisone provides a trapped product in 10 % yield. Thus, in line with its structural rigidity, only the trioxolane provides a C radical eminently suited for intermolecular trapping. In contrast, the structural flexibility of the C radicals from the artemisinins allows facile extrusion of Fe(2+) and collapse to benign isomerization products. The propensity towards the formation of radical marker products and intermolecular radical trapping have no relationship with the in vitro antimalarial activities of the artemisinins and trioxolane. Desferrioxamine (DFO) attenuates inhibition of PfATP6 by, and antagonizes antimalarial activity of, the aqueous Fe(2+)-susceptible artemisinins, but has no overt effect on the aqueous Fe(2+)-inert artemisinins. It is concluded that the C radicals cannot be responsible for antimalarial activity and that the Fe(2+)-susceptible artemisinins may be competitively decomposed in aqueous extra- and intracellular compartments by labile Fe(2+), resulting in some attenuation of their antimalarial activities. Interpretations of the roles of DFO and AA in modulating antimalarial activities of the artemisinins, and a comparison with antimalarial properties of simple hydroperoxides and their behavior towards thapsigargin-sensitive SERCA ATPases are presented. The general basis for the exceptional antimalarial activities of artemisinins in relation to the intrinsic activity of the peroxide within the uniquely stressed environment of the malaria parasite is thereby adumbrated.  相似文献   

16.
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood–brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin–angiotensin–aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.  相似文献   

17.
While many antitumor drugs have yielded unsatisfactory therapeutic results, drugs are one of the most prevalent therapeutic measures for the treatment of cancer. The development of cancer largely results from mutations in nuclear DNA, as well as from those in mitochondrial DNA (mtDNA). Molecular hydrogen (H2), an inert molecule, can scavenge hydroxyl radicals (·OH), which are known to be the strongest oxidizing reactive oxygen species (ROS) in the body that causes these DNA mutations. It has been reported that H2 has no side effects, unlike conventional antitumor drugs, and that it is effective against many diseases caused by oxidative stress and chronic inflammation. Recently, there has been an increasing number of papers on the efficacy of H2 against cancer and its effects in mitigating the side effects of cancer treatment. In this review, we demonstrate the efficacy and safety of H2 as a novel antitumor agent and show that its mechanisms may not only involve the direct scavenging of ·OH, but also other indirect biological defense mechanisms via the regulation of gene expression.  相似文献   

18.
Fusarium graminearum is a destructive fungal pathogen that threatens the production and quality of wheat, and controlling this pathogen is a significant challenge. As the cost-effective homolog of melatonin, 5-methoxyindole showed strong activity against F. graminearum. In the present study, our results showed the strong adverse activity of 5-methoxyindole against F. graminearum by inhibiting its growth, formation, and conidia germination. In addition, 5-methoxyindole could induce malformation, reactive oxygen species (ROS) accumulation, and cell death in F. graminearum hyphae and conidia. In response to 5-methoxyindole, F. graminearum genes involved in scavenging reactive oxygen species were significantly downregulated. Overall, these findings reveal the mechanism of antifungal action of melatonin-homolog 5-methoxyindole. To the best of our knowledge, this is the first report that a novel melatonin homolog confers strong antifungal activity against F. graminearum, and 5-methoxyindole is a potential compound for protecting wheat plants from F. graminearum infection.  相似文献   

19.
This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi), an antineoplastic agent, on the generation of reactive oxygen species (ROS) and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR) by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP) 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR.  相似文献   

20.
An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS—at strictly regulated levels—are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes—they can be live-savers too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号