首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为深入研究转炉渣气化脱磷后循环利用的工艺效果,在承钢公司100 t转炉上采用焦粉进行气化脱磷试验并分析了焦粉还原P的可行性.试验结果表明:在溅渣护炉阶段添加焦粉进行气化脱磷,熔渣中先被还原的是P2O5,试验炉次平均气化脱磷率为36.78%;应用气化脱磷渣循环利用工艺后,试验炉次冶炼终点钢液成分合格,钢液中P质量分数呈现降低趋势;试验中吨钢的钢铁料消耗量平均降低0.04 kg,吨钢的石灰消耗量平均降低5.54 kg,吨钢的CO2排放量降低约1 kg.  相似文献   

2.
利用溅渣护炉动力学条件,向终渣中加入焦粉可使终渣中P元素以气态形式脱除,处理后熔渣可循环利用。为进一步提升气化脱磷率进行了优化工业试验,试验表明:焦粉最佳加入量为1.1倍碳当量,其气化脱磷率为42.3%;将溅渣护炉时的底吹流量控制在350 m~3/h气化脱磷率最大,为37.9%;焦粉粒度6~8 mm时气化脱磷率为34%,焦粉粒度细化至4~6 mm时气化脱磷率变化不大;若溅渣前加入1/2焦粉,溅渣开始10 s内加入其余部分,气化脱磷率可提高至37%。  相似文献   

3.
为实现转炉溅渣护炉阶段的气化脱磷工艺,避免炉渣磷富集,便于脱磷熔渣留至后续炉次循环利用,在实验室进行了焦粉还原转炉渣的热态试验,研究结果表明,随着试验温度的升高,焦粉的气化脱磷率逐渐升高,1900 K下的气化脱磷率可达82.35%;焦粉的气化脱磷率随着炉渣碱度的升高呈现降低趋势;当焦粉加入量足够时,适当增加炉渣中FeO质量分数有利于气化脱磷反应的进行;当焦粉粒度为0.5~2.5 mm时,气化脱磷率变化不大,约为58%,但当焦粉粒度为2.5~3.5 mm时,气化脱磷率降至52%。富磷相微区碳质量分数与磷质量分数成反比,这印证了焦炭确实参与了气化脱磷反应。研究结果为工艺开发提供了一定的理论指导。  相似文献   

4.
为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷炉渣作为返料用于造渣脱磷的热态试验。研究结果表明:气化脱磷渣具备高氧化钙、高碱度、低P_2O_5、高FeO的特点,不需经历成渣过程,可直接用于二次脱磷;采用气化脱磷渣进行铁水脱磷试验时,随着试验温度的提高,铁水终点磷含量呈增大趋势,1 500℃下终点铁水w(P)仅为0.067%,对应的脱磷率为40%;对比气化脱磷渣和配制脱磷剂炉次的脱磷速度可知,在反应前期,气化脱磷渣成渣速度快,气化脱磷渣炉次的铁水磷含量低于配制脱磷剂炉次;但受限于磷容量,气化脱磷渣的终点脱磷效果不如所配脱磷剂,因此建议在工业试验中可将气化脱磷渣与新造渣剂搭配使用,在保证脱磷效果同时,减少造渣料消耗。  相似文献   

5.
溅渣护炉过程加入焦末可使熔渣中P元素以气态形式脱除,在河钢集团承钢公司进行了半钢熔渣气化脱磷循环利用工业试验,研究结果表明:炼钢温度下气化脱磷初始产物以P_2气体存在;半钢熔渣气化脱磷后循环利用不会影响后续炉次的脱磷效果,试验炉次终点钢水磷质量分数均值在0.019%,满足冶炼需求;气化脱磷熔渣循环利用可减少石灰消耗约6.35 kg/t,减少比例为24.73%;气化脱磷炉渣主要物相组成为硅酸盐相、RO相,P主要富集在C_2S相(硅酸二钙)中,炉渣含有部分未反应的焦末。  相似文献   

6.
目前在溅渣护炉过程中进行气化脱磷是一种有效的炉渣除磷技术。为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷渣作为返料用于造渣脱磷的试验研究。研究结果表明,气化脱磷渣用于铁水脱磷时前期脱磷能力强,终点脱磷率低,其终点铁水脱磷率和脱磷速率分别为53.3%和0.16%/min;对比配制脱磷剂炉次可知,配制脱磷剂前期脱磷效果差,终点脱磷率高,其终点铁水脱磷率和脱磷速率分别为91.6%和0.32%/min。根据两者脱磷剂的脱磷优势采用混合配比铁水脱磷,当气化脱磷渣大比例用于铁水脱磷时出现回磷现象;当混合比例为1∶4时脱磷效果最好,终点脱磷率为64.4%。采用生命周期评价法对混合渣料比例为1∶4铁水脱磷进行CO2减排评估,从系统边界的起点到终点预估吨钢可减排CO26.034~10.34 kg,吨钢可节省石灰成本1.8~3.0元。  相似文献   

7.
转炉渣在钢铁厂内部循环使用是最便捷的钢渣二次利用途径,但目前循环利用量甚少,主要是因为钢渣中磷元素含量较高,在烧结过程中难以去除,烧结矿中的磷又经过高炉冶炼几乎全部进入铁水,造成高炉内的磷富集现象,同时又会加重炼钢过程的脱磷负担.采用Factsage 6.2分别对不添加SiO2和添加SiO2条件下钢渣气化脱磷反应的开始温度进行了热力学计算,初步探明了气化脱磷反应的温度、压力条件;在微波加热条件下将纯试剂Ca3(PO4)2与C在1 100℃、103 Pa条件下进行气化脱磷试验,通过检测反应产物验证了气化脱磷反应的可能性;并将钢渣与焦粉在同样条件下进行气化脱磷试验,保温30 min,气化脱磷率达31%.研究结果探明了钢渣气化脱磷反应的热力学条件,为实现转炉渣在钢铁企业内部的循环利用提供了理论依据.  相似文献   

8.
为了解决转炉渣由于磷含量过高而不能返回到转炉内循环利用的问题,采用FactSage7.2并结合SEM+EDS对气化脱磷理论和影响因素、留渣操作和枪位控制对脱磷的影响以及气化脱磷渣形貌进行了分析。结果表明,在温度高于941 K时用C还原出炉渣中P_2O_5的P是可行的,同时降低反应分压有利于气化脱磷反应的进行;采用焦粉作为还原剂时,碳当量和底吹流量分别控制为2倍碳当量和300 m~3/h时气化脱磷效果最好;当底吹流量为300 m~3/h、2倍碳当量和w(FeO)≥18%时气化脱磷率最高,为42%。采用留渣操作溅渣护炉气化脱磷模式时终点钢液磷含量较低,前期采用稍高的吹炼枪位,后期逐渐降低枪位,气化脱磷渣形貌结构表明P元素主要富集在Ca、Si所在的深灰色区域。  相似文献   

9.
转炉渣作为炼钢工艺的副产品,具有极大的综合利用潜力,但磷元素富集限制了在炉内循环利用。基于溅渣护炉过程中进行熔渣气化脱磷操作,在实验室开展焦炭还原转炉渣气化脱磷热态试验。研究结果表明:留渣碱度在2.81~3.71时,气化脱磷渣的磷分配比随炉渣碱度的升高而增大;留渣的FeO质量分数在16%~28%时,随着FeO含量的增加,气化脱磷渣的磷分配比增大。气化脱磷渣具备一定的脱磷能力,在脱磷阶段的理论成渣路线应遵循高FeO含量,碱度先由高到低,然后缓慢增加,成渣过程中理论渣系控制在R=1.55~3.17,w(FeO)=28%~46%。采用该成渣路线进行生产实践,终点钢水磷质量分数降低了0.006百分点,钢铁料消耗降低了4 kg/t,渣料消耗降低了4.6 kg/t,既保证了高效脱磷,又降低了冶炼成本。  相似文献   

10.
通过对双联工艺生产汽车板中300 t脱磷转炉进行脱碳转炉热态渣循环工艺的研究,分析了热态渣循环利用过程对脱磷转炉脱磷效率以及辅料消耗的影响。结果表明,热态渣循环工艺能够充分利用脱碳转炉热态渣高CaO、低P_2O_5以及成渣快的特点,从而实现脱磷炉的高效脱磷。采用热态渣循环工艺以后,热态渣试验炉次钢种半钢终点磷质量分数平均降低0. 003 7%,平均脱磷率提升至63. 55%。试验炉次石灰使用量较常规炉次平均每炉降低2. 18 t。  相似文献   

11.
在1 100~1 350℃,1 000Pa,3倍碳当量条件下,采用微波加热方法对碳还原转炉钢渣的气化脱磷反应进行了宏观动力学分析。结果表明,微波加热条件下,气化脱磷率为31.0%~35.7%,该气化脱磷反应为二级反应,活化能为55.52kJ/mol,并得到了气化脱磷反应速率常数与温度的关系式,同时界面化学反应为可能的限制性环节。通过提高反应温度、减小钢渣及焦炭粒度、增大反应物料接触面积,可提高气化脱磷反应的速率。研究结果为探明微波碳热还原脱磷反应的机理及速率问题,实现转炉钢渣在钢铁企业内部的循环利用提供了理论依据。  相似文献   

12.
摘要:针对脱磷转炉渣中磷资源高效回收及其资源化利用过程中存在的问题,系统总结了含磷钢渣除磷方式及其应用优缺点,并着重总结了不同条件(炉渣温度、炉渣碱度、钢渣中FeO质量分数、碳当量、底吹气体流量、冶炼时间等)对碳热还原气化脱磷的影响规律。同时,以应用前景较好的碳热还原气化脱磷方法为基础,提出了脱磷转炉渣在碳热还原气化脱磷过程磷的流向规律,展望了渣中磷资源回收制备磷铁及其循环利用模式。这为实现渣中磷资源高效回收及处理后残渣资源化利用提供重要研究基础和方向。  相似文献   

13.
在介绍某炼钢系统工艺流程及基于溅渣过程气化脱磷原理和特点的基础上,探讨了温度、Fe O含量、碱度、氮气流量四大因素对半钢冶炼炉渣气化脱磷的影响问题。结果显示,在实际生产过程中,需谨慎选择出钢温度,可以适当提高炉渣中Fe O的含量,适当增加氮气流,使终渣的碱度适当的降低。将气化脱磷渣进行循环使用后,可减少资源、能源消耗,降低对环境影响,节约生产成本,且对后续炉次的冶炼无影响,因此值得在钢铁工业中推广实践。  相似文献   

14.
为了将选铁后剩余钢渣用作炼钢返回渣料,以降低造渣原料消耗,实现钢渣高效循环利用,作者进行了冶炼实验研究。试验结果表明,采用冷态钢渣替代部分炼钢辅料用于转炉炼钢工艺可行,吨钢辅料消耗降低5.694 kg。使用冷态钢渣,脱磷率降低小于1%;成品硫平均含量为0.0152%,较同期未使用冷态钢渣炉次增加0.0012%,使用冷态钢渣能满足冶炼大多数钢种要求。  相似文献   

15.
赵成林  张宁  康磊  曹东  李广帮 《钢铁》2016,51(5):41-44
 对碳热还原转炉渣进行热力学分析,分别在二硅化钼高温电阻炉和500 kg顶底复吹多功能试验炉开展转炉渣碳热还原脱磷的实验室试验。结果表明,反应温度及动力学条件对脱磷率有较大影响,在电阻炉试验条件下,保证反应温度为1 500 ℃、碳当量为3.0、保温时间为30 min的情况下,可以获得30%左右的脱磷率。在顶底复吹多功能试验炉内,焦粉既作为还原剂也作为升温剂,焦粉与氧气反应放热可以保证脱磷反应在较高温度下进行,同时顶吹氧气对熔渣层的良好搅拌有利于脱磷反应速度进一步提高,试验过程脱磷率为84%,其中还原进入钢液的脱磷率为75.85%,气化脱磷率为8.15%。焦粉带入的硫有10.8%进入钢水,有6.25%进入炉渣。  相似文献   

16.
通过对LF精炼炉热态钢渣循环利用的研究,认为热态钢渣综合利用后,脱硫率差别不大、精炼钢水的质量能够保证、减少了LF炉造渣料消耗、节省了电能和电极消耗。宣钢炼钢厂180 t转炉-LF精炼炉ER70S-6品种钢生产应用,LF精炼炉热态钢渣循环利用后,脱硫率降低2.07%、渣料消耗减少1 350kg、吨钢电耗降低7.53 kW.h,平均每炉回收余钢0.78 t,取得了较好效果。  相似文献   

17.
用四元合成转炉钢渣部分替代铁水预处理渣进行脱磷实验,确定了反应最佳温度(1 350℃)和渣金质量比(1∶7)。实验表明,当低磷转炉钢渣替代量不高于40%时,铁水预处理渣可以达到85%以上的脱磷率。低磷转炉钢渣部分替代铁水预处理脱磷渣进行脱磷具有一定的可行性,也有利于冶金资源的节约和再利用。  相似文献   

18.
针对顶底复吹转炉炼钢生产,结合气化脱磷热力学理论分析,研究了供氮强度、焦粉加入增加比例和底吹气体流量分别对气化脱磷的影响。结果表明,在炼钢温度下用碳质脱磷剂还原炉渣中P_2O_5是可行的,选择以焦粉作为还原剂更加合理;为了保证气化脱磷率在36%以上,应将供氮强度、焦粉加入增加比例和底吹气体流量分别控制在3.5~4.5 m~3/(t·min)、8%~12%和280~400 m~3/h为好。  相似文献   

19.
 在低温下脱磷转炉熔渣中的磷质量分数过高往往是限制转炉渣循环利用的重要因素,因此如何有效降低转炉熔渣中磷质量分数成为众多钢铁企业迫切需要解决的重点问题之一。基于此,从理论分析和工业试验角度,并结合XRD、SEM-EDS和拉曼光谱等试验手段进一步分析研究了理论热力学条件、转炉渣熔点、矿相结构和炉渣结构对低温气化脱磷的影响。通过理论分析表明,较高温度、较低的FeO含量和碱度有利于低温气化脱磷反应。工业试验结果表明,当终点温度为1 350~1 360 ℃、转炉渣FeO质量分数为25%~35%、碱度控制为1.2~2.5时,气化脱磷率可以达到30%以上。当炉渣碱度小于1.25、FeO质量分数小于35%时,适当地提高炉渣碱度和FeO含量能促进炉渣熔点降低,进而有利于低温气化脱磷反应的发生。XRD和SEM-EDS分析结果表明,转炉渣主要由富磷相、基体相和RO相组成,其中Si、P、Ca质量分数高的Ca2SiO4-Ca3(PO4)2富磷相的存在不利于低温气化脱磷反应发生,Fe、Mn等金属氧化物质量分数高的RO相和基体相的存在有利于低温气化脱磷。通过转炉渣拉曼光谱分析表明,当转炉渣硅氧四面体结构Qn(n=1,2,3)相对含量较低时,渣中聚合度降低,且Ca3Si2O7相含量较少,炉渣流动性较好,此种渣结构有利于低温气化脱磷。通过本研究可以为钢铁企业实现脱磷转炉渣的二次利用提供借鉴。  相似文献   

20.
含铁量约15%的钢渣尾渣作为冶金辅料返回转炉循环利用,可以降低石灰消耗量,对少渣冶炼极为有利。对八钢目前现有铁水及原辅料条件下生产成品[P]含量小于0.015%钢种的过程中配加返渣,进行了降低渣料消耗的试验探索,返渣回收利用有利于脱磷,可以降低炼钢成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号