首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以某钢厂X80钢板坯为研究对象,采用ProCAST软件建立凝固数学模型,模拟了不同连铸工艺条件下230 mm×1 280 mm X80管线钢板坯凝固过程中各点温度及凝固率的变化情况,研究了过热度、拉速和比水量对板坯凝固过程的影响。研究结果表明:过热度对铸坯凝固影响最小,随着过热度增加,铸坯表面温度升高,铸坯液相穴长度随之增加,而两相区则随之减小;拉速对铸坯凝固影响最大,拉速提高,铸坯表面温度、液相穴长度、两相区均增大;比水量增加,铸坯表面温度降低,液相穴长度减小。  相似文献   

2.
结合某厂大方坯连铸机的实际情况,采用Pro CAST软件建立了数学传热模型,并利用射钉结果对模型加以修正,提高了模型的准确性。根据大方坯模拟结果,末端电磁搅拌位置设在凝固率为0.6~0.7或者液芯35~55 mm处效果不佳,研究铸坯凝固规律,选择装在中心固相率为0.1处,这与3/4液相穴位置相对应。根据固相率为0.1的概念,得出过热度28℃,比水量0.6 L/kg条件下,拉速0.78 m/min偏大,推荐拉速0.7 m/mim,并计算了最佳拉速随现场过热度的变化。优化后铸坯内部质量明显改善。  相似文献   

3.
建立了大方坯传热的数学模型,通过现场射钉实验对数学模型进行了校正,并通过数学模型确定了凝固终点位置,研究了过热度、拉速及二冷比水量等工艺参数对大方坯凝固终点位置的影响。研究结果表明,过热度对铸坯的凝固终点长度、液相的终点长度和固液两相区的长度影响较小,之间呈正比例线性关系;拉坯速度对其影响非常显著,之间呈正比例线性关系;二冷比水量对其影响比较显著,之间呈反比例线性关系。  相似文献   

4.
齐新霞  贾琦 《特殊钢》2022,43(4):1-4
以Q460钢(/%:0.17C,0.35Si,1.5Mn,0.020P,0.020S,0.020Nb,0.075V)3 250 mm×150 mm宽板坯为研究对象,采用ANSYS软件建立凝固传热模型,研究拉坯速度、比水量、过热度等工艺参数对铸坯凝固过程的影响。模拟结果表明:拉坯速度每增大0.10 m/min,矫直段铸坯表面温度升高36.5℃,出坯温度升高50℃,坯壳厚度减薄2.4 mm,液心长度增加1.2 m;每增加1℃的过热度,矫直点铸坯上表面中心温度增加1.73℃,延长液芯长度0.11 m;因此,拉坯速度是影响铸坯质量的关键。生产应用表明,3 250 mm×150 mm板坯拉速1.20~1.25 m/min,过热度15~20℃时板坯表面矫直温度大于950℃,降低了铸坯中心疏松和偏析,表面质量显著提高。  相似文献   

5.
以凝固参数测定和铸坯表面温度测量结果为验证边界条件,应用ProCAST软件对960QT钢板坯连铸过程中的传热和凝固过程进行了模拟,分析了拉速、过热度对铸坯温度场、液芯长度的影响,得出在拉速为0.9 m/min,过热度为23℃工况下,960QT板坯的凝固终点位置距离弯月面18.43 m;在浇注温度为1 535℃时,拉速每增加0.1 m/min,凝固末端位置向后移动2.7 m左右;在拉速为0.9 m/min时,过热度每增加10℃,凝固末端位置向后移动0.4 m左右。此外,对轻压下系统的压下位置和压下量进行了优化,由3个扇形段压下改为2个扇形段压下,6、7段压下量改为2.0、2.5 mm。工艺优化后,铸坯中心偏析和中心疏松得到明显改善,中心碳偏析指数由1.85降至1.09。  相似文献   

6.
为改善20CrMnTi钢小方坯凝固组织,基于ProCAST软件中的CAFE模型,对其凝固组织进行数值模拟,研究了不同钢水过热度、铸坯拉速、二冷比水量对凝固组织的影响。模拟结果表明,降低钢水过热度、提高铸坯拉速、降低二冷比水量均可达到增大铸坯等轴晶率和细化晶粒的目的,其中过热度对其影响最大。过热度每降低10℃,等轴晶率平均增加3.7%;拉速每增加0.1 m/min,铸坯等轴晶率平均增加1.8%;比水量每降低0.1 L/kg,铸坯等轴晶率平均增加1.65%。生产应用表明,钢水过热度30℃时,当拉速由原2.2 m/min降低至2.1 m/min,二冷比水量由0.6 L/kg提高至0.7 L/kg,铸坯中心疏松明显减少。  相似文献   

7.
建立了25MnSiV矩形连铸坯凝固组织数学模型,研究了拉速、过热度、二冷区给水量对连铸坯疏松缩孔的影响规律。结果表明,提高拉速和过热度均会增加铸坯疏松缩孔比例,而增加二冷区给水量能降低铸坯疏松缩孔比例,最佳工艺参数分别为拉速1.0 m/min、过热度20℃、二冷区给水量为最大给水量的60%。  相似文献   

8.
建立二维非稳态传热模型对380 mm×490 mm大方坯凝固过程进行了模拟计算,并采用射钉试验结果验证了该模型的准确性。计算结果表明,拉速对凝固终点影响最大,过热度和比水量影响较小。拉速每增加0.01 m/min,凝固终点后移约0.5 m;过热度每增加10℃,凝固终点后移约0.3 m;比水量每减少0.02 L/kg,凝固终点后移约0.15 m。在固相率较低时进行大压下,铸坯中心质量并未改善,同时会产生2.0级的中间裂纹。通过调整拉速,在较高固相率时进行大压下,铸坯中心偏析由2.0级改善到0.5级,中心疏松和缩孔降到0.5级,并且消除了内部裂纹。  相似文献   

9.
建立了Q345E钢Φ600 mm大圆坯凝固传热模型,利用Procast软件对其连铸凝固过程进行了数值模拟,并通过射钉试验结果验证。研究结果表明:浇铸温度对铸坯的表面与中心温度以及固液相分布影响很小;拉速每增加0.02 m/min,铸坯表面温度无明显变化,糊状区向前移动,凝固末端离结晶器液面距离增加约1.75 m;二冷比水量每增加0.01 L/kg,其二冷区表面温度约降低30℃,糊状区向后移动少量,凝固末端后移0.3 m左右;适宜的工艺条件为浇铸温度1 539℃、拉速0.22 m/min、二冷比水量0.08 L/kg。实际生产的Q345E钢Φ600 mm大圆坯中心缩孔0.5级,中心疏松1.0级,碳偏析指数不大于1.09,完全满足标准要求。  相似文献   

10.
结合现场研究,利用显式有限差分法计算出不同工艺条件下的铸坯凝固情况;进行了过热度对出结晶器坯壳厚度、方坯表面温度、铸坯凝固过程中坯壳厚度和液相穴的影响的模拟分析研究。模拟结果表明:在拉速相同的情况下,随过热度的增加,出结晶器坯壳厚度减小、表面温度略微增加、铸坯液相穴拉长、坯壳减薄。  相似文献   

11.
《特殊钢》2016,(5)
基于有限元法按照二维凝固传热模型对拉速0.6m/min和0.5 m/min,钢水过热度30℃和10℃以及比水量0.25 L/kg和0.20 L/kg连铸的GCr15轴承钢280 mm×325 mm坯进行凝固组织模拟,研究连铸工艺参数对铸坯组织的影响。结果表明,当过热度由10℃增大到30℃时,铸坯等轴晶和混晶区域面积由70%降低到55%,过热度对铸坯凝固组织的影响非常显著;拉速由0.6 m/min降低到0.5 m/min,柱状晶平均增长6.5 mm,但是由柱状晶向等轴晶转变的过渡区域减小,可以减轻溶质元素在此区域的富集;将比水量由0.25 L/kg降低到0.20 L/kg,铸坯柱状晶和等轴晶区域没有明显的区别,所以降低比水量对铸坯凝固组织没有明显的影响。  相似文献   

12.
党爱国  崔娟  李永超  冯艳 《特殊钢》2016,37(5):66-68
基于有限元法按照二维凝固传热模型对拉速0.6m/min和0.5 m/min,钢水过热度30℃和10℃以及比水量0.25 L/kg和0.20 L/kg连铸的GCr15轴承钢280 mm×325 mm坯进行凝固组织模拟,研究连铸工艺参数对铸坯组织的影响。结果表明,当过热度由10℃增大到30℃时,铸坯等轴晶和混晶区域面积由70%降低到55%,过热度对铸坯凝固组织的影响非常显著;拉速由0.6 m/min降低到0.5 m/min,柱状晶平均增长6.5 mm,但是由柱状晶向等轴晶转变的过渡区域减小,可以减轻溶质元素在此区域的富集;将比水量由0.25 L/kg降低到0.20 L/kg,铸坯柱状晶和等轴晶区域没有明显的区别,所以降低比水量对铸坯凝固组织没有明显的影响。  相似文献   

13.
为控制线材轧制用连铸小方坯质量,应用数值模拟软件对鞍钢股份有限公司炼钢总厂120 mm×120 mm小方坯连铸凝固过程进行模拟。模拟结果表明,在合理的冷却制度下,过热度低于35℃,拉速约为3.0 m/min的条件下,可以将结晶器出口坯壳厚度、铸坯液芯长度和铸坯表面温度控制在合适的范围内,并防止铸坯表面及内部产生缺陷、保证浇铸安全。  相似文献   

14.
谢集祥  罗钢  刘浏  汪成义 《特殊钢》2020,41(2):10-14
基于涟钢板坯连铸机结构参数和冷却条件,建立了Q235B 230 mm×1 280 mm板坯连铸过程凝固传热的数值模型,研究了铸坯温度分布和坯壳厚度变化规律以及过热度和拉速对铸坯温度和凝固末端位置的影响规律。得出:随过热度和拉速的增加,铸坯中心和角部温度整体呈升高趋势,在其它参数不变的条件下,过热度每升高10℃,铸坯凝固末端和液相消失位置分别后移约0.38 m和0.31 m;拉速每升高0.1 m/min,凝固末端和液相消失位置分别后移2.06 m和1.4 m。通过数值模拟研究,掌握了铸坯温度和凝固末端位置的变化规律。  相似文献   

15.
珠钢CSP薄板坯凝固层厚度研究   总被引:3,自引:0,他引:3  
结合珠钢生产实际情况,采用射钉法来测定二冷区不同位置的凝固坯壳厚度,试验结果表明,4.8m/min拉速下铸坯液芯长度为4820mm,4.5m/min拉速下铸坯液芯为4490mm,两种拉速下连铸坯坯壳厚度的实际测量结果与凝固传热模型计算结果一致。整个凝固过程坯壳厚度生长符合平方根定律。  相似文献   

16.
基于ANSYS建立37Mn5钢φ200mm断面圆坯连铸过程中的凝固传热数学模型,并通过射钉试验及表面测温对模型的准确性进行了验证,模拟研究了拉速、过热度以及比水量对凝固终点、铸坯表面温度以及铸坯中心过热消散位置的影响,研究结果证明:比水量对铸坯表面回温影响最大,每增加0.1L·kg~(-1),铸坯表面回温增加10℃,而拉速对凝固终点及铸坯中心的过热消散的位置影响最大,拉速每增加0.1m·min~(-1),凝固终点及铸坯中心的过热消散的位置分别增加1.1m和0.8m,并从理论上验证了φ200 mm断面生产37Mn5拉速从1.4m·min~(-1)提高到1.8m·min~(-1)的可行性,另外考虑到37Mn5的高温热塑性特点及二冷冶金准则,针对铸坯存在的质量缺陷,优化二冷工艺制度,工业试验结果表明:低过热度(25℃以下),比水量为0.3L·kg~(-1),拉速从1.4m·min~(-1)提高到1.8m·min~(-1)时,铸坯低倍质量良好,无内裂纹以及中心缩孔,中心等轴晶率为35%,但过高的过热度(30℃以上)会存在中心缩孔。  相似文献   

17.
《特殊钢》2016,(4)
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m~3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m~3/h。  相似文献   

18.
郭平 《河北冶金》2016,(5):15-17
钢液在凝固过程中由于碳的不均匀分布导致了铸坯碳偏析。研究了钢水过热度与拉速、二冷比水量、电磁搅拌强度对齿轮钢铸坯碳偏析的影响。结果表明:拉速控制在1.7 m/min,过热度控制在20~35℃;结晶器电磁搅拌强度和末端电磁搅拌强度扭矩分别在32 N.cm、15 N.cm,比水量在0.6 L/kg时,连铸坯碳偏析改善比较明显。  相似文献   

19.
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m3/h。  相似文献   

20.
《炼钢》2015,(4)
以某钢厂45钢大方坯为研究对象,建立了45钢凝固传热的数学模型。用双混合模型计算了45钢的热物性参数,并通过射钉试验及坯壳测温测定窄面坯壳厚度和表面温度对模型进行了验证,结果表明该数学模型能够较好的模拟45钢凝固传热过程。模拟结果表明:在现行拉速0.5 m/min,过热度为35℃工艺条件下,合适的轻压下位置在距弯月面21.8~23.1 m处;铸坯出结晶器表面温度回升幅度大,容易导致表面裂纹;稳定拉速是提高铸坯质量的关键。改进后,中心疏松等级从1.5级降到不大于1.0级,中心缩孔不大于0.5级,最大碳偏析比小于1.12,铸坯表面裂纹率由3.25%降低到0.5%;铸坯凝固末端的凝固加速是由于铸坯中心大过冷条件下钢液中等轴晶的快速生长造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号