首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
近年来,随着微能源的发展,微型压电振动能量收集器得到了广泛关注,但传统d31模式PZT薄膜微型压电振动能量收集器输出电压普遍较低,难以满足应用需求。为提高微型压电振动能量收集器的输出电压,论文提出了共质量块悬臂梁阵列压电振动能量收集器新结构,该结构包含压电悬臂梁单元组成的阵列和一个质量块,悬臂梁阵列共用质量块。采用有限元方法对该结构进行了优化设计,得到压电悬臂梁单元优化尺寸为3 mm×2.4 mm×0.05 mm,硅质量块优化尺寸为8 mm×12.4mm×0.5 mm。设计了MEMS压电阵列振动能量收集器加工工艺流程,加工出原理样件。在1 gn加速度,239.7 Hz谐振频率激励下,测试得到样件输出开路电压有效值为9.16 V;在最优化负载200 kΩ下,负载输出电压有效值为5.51 V,输出功率为151.8μW。  相似文献   

2.
以PDMS为柔性基底设计的PVDF压电薄膜新型压电能量收集器压电性能良好,柔韧性强,可适应复杂的振动环境,具有广阔的应用前景.首先设计了具有柔性基底的压电能量收集器的结构;其次,用PVDF颗粒采用静电纺丝法制备了PVDF压电薄膜;最后,实验表明设计的压电能量收集器在振动频率为25 Hz,振动幅度为2 mm的激励下,开路输出峰值电压为8.38 V,输出功率密度为6.32 μW/cm2;经Ansys有限元分析,发现增大激励源的振动幅度,可以提高压电能量收集器的开路输出电压和输出功率.  相似文献   

3.
刘延彬 《传感技术学报》2018,31(7):1012-1016
为了提高微型悬臂梁式压电振动能量收集器的压电材料利用率,增强其能量转换效率,基于等强度梁理论设计了一种微型压电式振动能量收集器.分析了该能量收集器的力学特性及机电耦合特性,并且与等截面悬臂梁式振动能量收集器进行了对比.研究结果表明:微型等强度梁式压电振动能量收集器的固有频率低、表面应力分布合理、压电材料利用率高、能量输出密度大,其性能明显优于等截面梁式压电振动能量收集器.  相似文献   

4.
高能量密度输出、低频范围响应、环境适应性强的自供电振动能量采集器已成为微能源技术领域的一个重要发展方向。提出一种d31型工作模式下MEMS压电式振动能量采集器,设计八悬臂梁-中心质量块结构代替传统的单悬臂梁结构,利用溶胶-凝胶(Sol-Gel)技术在每个悬臂梁上异质集成制备锆钛酸铅(Pb(Zr0.53Ti0.47)O3,PZT)压电功能厚膜层,通过MEMS工艺和引线键合技术完成器件础结构制造。输出性能测试结果表明,器件一阶谐振频率为41 Hz,3 gn加速度激励下输出电压峰峰值为264.00 mV;在器件两端加载3.00 MΩ负载时输出功率最大,为0.72 nW。  相似文献   

5.
微能量采集技术是利用某种效应把周围环境中的某种形式的能量转换成电能,为嵌入式系统和无线传感网络中的MEMS器件供能。本文探讨了一种基于MEMS技术的压电型微能量采集器。微能量采集器工作于低频环境,当给其振动激励信号时,它能够把机械能转换为电能。但是能量采集器直接输出的是交流电压,一般不能直接为器件供能。所以,利用AC-DC电路把交流转换为直流,实现为MEMS器件供能。文中给出了微能量采集器的测试电路,同时给出了测试结果,论证了在低频环境下这种微能量采集器的可行性。  相似文献   

6.
针对刚性支撑压电振动能量采集器工作频带窄、采集效率低等问题,提出了一种基于弹性支撑与放大的宽频压电振动能量采集器.利用有限元方法建立了宽频压电振动能量采集器的机电耦合模型,通过Ansys软件仿真分析了能量采集器结构参数对其频域输出特性的影响;根据力学和电学平衡方法建立了宽频压电振动能量采集器的集总参数机电耦合运动微分方程,利用4-5阶龙格库塔算法对方程进行了时域求解,仿真分析了能量采集器在不同结构参数下的振动位移、速度、输出电压和功率等性能.研制了弹性支撑和放大的宽频压电振动能量采集器原理样机,建立了样机系统实验平台,并对理论研究结果进行了实验验证,结果表明本文所提的宽频压电振动能量采集器具有工作频带宽、输出性能高等优点,适合为微电子器件进行供电.  相似文献   

7.
MEMS器件真空封装模型模拟   总被引:2,自引:1,他引:2  
结合典型的MEMS器件真空封装工艺,应用真空物理的相关理论,建立了MEMS器件真空封装的数学物理模型,确定了其数值模拟算法。据此,对一封装示例进行了计算,获得了真空回流炉内干燥箱及密封腔体真空度的变化情况,实现了MEMS器件真空封装工艺过程的参数化建模与模拟。  相似文献   

8.
在单一效应的MEMS振动驱动微能源的基础上,提出了一种MEMS压电-磁电复合振动驱动微能源器件。该微能源由八悬臂梁-中心质量块结构和永磁铁两部分组成,环境振动使中心质量块振动,PZT压电敏感单元由于压电效应产生电势差;同时中心质量块上集成的高密度线圈切割磁感线产生感应电动势,将压电转换与磁电转换相结合把振动能转换为电能。建立了该结构的数学模型并用有限分析软件Ansys12.0对该器件进行力学特性分析,最后对加工出的微能源进行性能测试。测试结果表明,该微能源谐振频率为8 Hz,易与环境发生共振;在共振条件下,施加1 gn 的加速度,器件压电发电开路输出电压峰峰值达154 mV,磁电发电开路输出电压峰-峰值达8 mV,有望为无线传感网络节点提供稳定的能源。  相似文献   

9.
能量收集器是解决复杂环境下为无线传感器网络节点供能问题的有效方法之一。针对传统收集器的共振频率高、频带窄等缺陷,设计了一种基于复合梁结构的压电-电磁式能量收集器,并进行了动力学分析与实验研究。首先对该结构进行理论模型建模,建立动力学方程,验证了其结构合理性。之后将该结构与其他传统压电结构进行对比研究,分析了收集器的动力学特性以及发电性能,优化结构参数,并进行了实验验证。研究发现通过复合梁与电磁单元的引入,收集器的工作频带得到了拓宽,改善了其发电性能,有效地使得该结构的一阶与二阶共振频率靠近。实验结果表明:负载电阻为10 kΩ、磁铁线圈间距为7 mm时,该复合梁压电电磁结构收集器具有最优的输出特性,其最大输出功率为20.17 mW,有效工作带宽约为13.40 Hz。  相似文献   

10.
复合式压电振动能量收集器的研究   总被引:1,自引:0,他引:1  
为解决无线传感器网络和便携式电子产品的自供能问题,研究了基于电磁耦合的压电悬臂梁式振动能量收集器.理论分析表明,通过增加压电悬臂梁的所受外力,可以按平方关系提高其产生的发电量.即采用PZT4压电元件及铍青铜作为金属基板,以固定于基板末端的永磁铁作为质量块制作了基于电磁耦合的悬臂梁式压电振动能量收集器.实验表明,压电悬臂梁附加永磁铁后其最大输出电压增加了222%,压电悬臂梁在磁场强度分别为0T与1T的作用力下,电压值的增幅分别为0.38%和2.12%.  相似文献   

11.
一种宽频的磁式压电振动能量采集器   总被引:1,自引:0,他引:1  
基于环境能量采集的压电振动能量采集器为无线传感器和微机电系统的长期供能提供了一种有效解决方案.目前研制的压电式振动能量采集器存在工作频率高,且频带窄的问题.给出了一种通过磁力的引入使其在低频下工作的、宽频的压电振动能量采集器,并搭建了测试系统对器件进行分析测试.在压电悬臂梁上放置永磁铁取代传统的质量块,同时在悬臂梁的上...  相似文献   

12.
为了满足无线传感网络节点对供电电源的自供电、低功耗、持续稳定供电的要求,研究了一种可以将环境中机械能转化为电能的MEMS压电-磁电复合式振动驱动微能源,结合压电转换与磁电转换把振动能转换为电能。建立数学模型,用有限分析软件Ansys12.0对不同尺寸的四悬臂梁-中心质量块结构进行力学特性分析,并对加工出的器件进行性能测试。测试结果表明,谐振频率为290Hz下,器件输出电压峰峰值随振动加速度的增加呈线性增加,1 m/s2和6 m/s2激励下有效输出电压分别为61mV和324mV,有望为无线网络传感节点提供性能高、寿命长、自供给的供电电源。  相似文献   

13.
随着以MEMS技术为依托,结合压电效应的振动能量采集技术的日臻完善,如何利用振动能量采集器构成高效的无源无线传感节点成为近期研究热点,而能量采集器输出的电能储存控制和低功耗发射技术是实现该节点的难点。在设计出对储能电容电压具有双阈值检测与控制功能的低功耗电路基础上,给出了一种自报警、无源无线低功耗传感节点。实验表明,在频率52 Hz正弦振动、振动加速度幅值为5 gn激励下,经过125 s的能量储存,节点能够以+10 dBm功率在16 ms内完成发射及无线报警,发射距离可达1.31 km。该节点构成的无线传感网络可广泛应用于石油管线、桥梁和军事侦察等外部供电极度受限环境的现场监控等用途。  相似文献   

14.
We propose a MEMS piezoelectric energy harvester with a wide operating frequency range by incorporating a high-frequency piezoelectric cantilever and a metal base as the top and bottom stoppers with a low-frequency piezoelectric cantilever. Frequency up-conversion of the piezoelectric energy harvester is realized when the low-frequency piezoelectric cantilever impacts and scrapes through the high-frequency piezoelectric cantilever. For an input acceleration of 0.6?g, with top and bottom stopper distances of 0.75 and 1.1?mm, respectively, the operating frequency ranges from 33 to 43?Hz. The output voltage and power up to 95?mV and 94 nW can be achieved. Experimental results indicate that the frequency up-conversion mechanism significantly improves the effective power.  相似文献   

15.
In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. For cantilever-based vibration energy harvesters, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is used to house a proof mass to improve the power output without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. However, despite while other contending designs do exist, this paper explores five selected micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer larger deflection and thus mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 µm AlN on 10 µm Si) with the same practical dimensions of 500 µm and 2000 µm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain cantilever topology.  相似文献   

16.
悬臂梁压电式振动发电机材料性能优化研究   总被引:1,自引:0,他引:1  
具有高能量密度的微型压电振动发电机可以无限、持续地为无线传感器网络提供能量。为了提高有限体积悬臂梁压电式振动发电机的发电能力,通过力学模型及有限元仿真分析了单晶片型式、双晶片并联型式和双晶片串联型式压电振动发电机的材料参数与输出电压及固有频率之间的关系。结果表明,在低频工作环境下,应优先选择PZT-4、PZT-5A、PZT-5H的压电材料和不锈钢、镍合金的基板材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号