首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在掘进和采煤的过程中,巷道围岩的受力情况复杂多变,因此,巷道离层位移和围岩压力的实时监测是保证巷道正常工作的一个重要因素。设计了一种基于FBG传感器网络的煤矿巷道在线监测系统。该系统实现井下700 m数据采集,井上分析处理,可提供时序趋势变化、结构分布变化和阈值报警等功能。根据朱仙庄煤矿巷道的特点,系统安装4只FBG位移传感器、4只FBG土压力传感器和4只FBG温度传感器,对巷道掘进区域的离层位移、围岩压力和温度变化进行在线监测。监测结果表明:系统对离层位移、围岩压力和巷道温度变化反映灵敏,能够有效保证巷道掘进的正常进行,且为后续巷道施工提供数据支持和理论依据。  相似文献   

2.
输电铁塔多处复杂地质结构,受不同地质灾害、风作用等影响易发生压坏、倒塔等现象,严重威胁电力系统稳定运行。常规目视巡视方法经济损耗大,不能及时发现问题。选取具有三层横担形式的双回路直线型输电塔,通过对输电塔ANSYS仿真分析获得应力分布。采用一种基于光纤Bragg光栅(FBG)传感网的输电铁塔在线监测系统测得塔身应变数据。通过分批估计与基于标准差的加权平均时序融合分析处理方法分别对4只FBG应变传感器在近半年采集的样本数据进行了融合,得到4支FBG应变传感器的时序融合值为:61.67με、61.37με、61.97με、61.82με。融合后的值可用于提高损伤识别的准确率,常规的目视巡视方法得到改善。  相似文献   

3.
针对铁道领域钢轨应变监测需求,提出一种基于光纤Bragg光栅( FBG)传感器的钢轨应变监测系统。从静态载荷监测角度,研究了不同加载位置的FBG传感器中心波长随加载载荷大小变化的关系。从动态载荷监测角度,研究了循环加载状态下的各FBG传感器中心波长偏移量特性。研究表明:在静态载荷作用下,各FBG传感器中心波长偏移量均随加载载荷增大而呈现良好线性变化关系,且传感器对载荷加载距离和角度变化较为敏感。在动态循环载荷作用下,FBG传感器网络能够较好地实现对钢轨应变和温度参量的实时监测。这些研究为钢轨应变与损伤分布式在线监测技术提供了有益借鉴。  相似文献   

4.
针对海上风电桩基的沉桩模型试验,采用无封装分布式光纤光栅(Fiber Bragg Grating, FBG)应变传感器对模型桩的沉桩过程进行应变监测,为提高FBG应变传感器的测量精度,通过采用自主设计并研制出的标定装置,提出了一种用于桩基试验的无封装FBG应变传感器灵敏度系数的标定方法,并将标定结果与理论值进行对比。随后,在模型桩的桩顶、桩中和桩底位置安装电阻式应变片进行加载试验,将FBG应变传感器的测量应变数据与电阻应变片测量数据进行对比分析。研究结果表明:标定后的FBG应变传感器的灵敏度系数与理论值相比存在较大差异,最大误差为6.76%,这是由于标定后的FBG应变传感器测量结果更为准确,并且FBG传感器的测量精度要高于应变片。该标定试验为后续沉桩试验模型桩应变、应力及桩侧阻力的监测提供了可靠的数据支撑。  相似文献   

5.
半潜式平台在深海服役期间其关键部位的疲劳响应监测和超载预警是至关重要的。基于光纤布拉格光栅(FBG)监测原理,对半潜式平台结构关键节点进行了疲劳响应监测试验研究和疲劳损伤后的极限强度监测试验研究,通过FBG与应变计监测结果对比,分析了节点应变和位移变化规律,探讨了平台结构节点疲劳响应和疲劳剩余极限强度的监测方法。试验结果表明,FBG的疲劳响应监测值与应变计的监测值接近,曲线变化趋势一致,应变变化规律与位移变化规律比较吻合。FBG传感器能够监测到结构节点的疲劳响应和疲劳剩余极限强度的变化,可以为半潜式平台结构的安全评估和运行维护提供参考。  相似文献   

6.
布拉格光栅传感器应用实例   总被引:2,自引:0,他引:2  
由于环境等各种不利因素的影响,隧道二次衬砌应力、应变状态的长期监测受到人们的重视.分析了光纤光栅传感器传感原理,将光纤布拉格光栅传感器应用于新厂隧道二次衬砌应力、应变监测.光纤布拉格光栅传感器所采集的数据通过隧道分析软件生成隧道应变位移图与隧道各测点时空图进行对比.通过隧道分析软件生成的隧道应变位移图能更直观的表现隧道断面受力及位移情况.  相似文献   

7.
FBG传感器在复合材料固化监测中的应用   总被引:1,自引:0,他引:1  
FBG传感器广泛应用于复合材料结构健康监测中,将双光栅的FBG传感器埋入到玻璃纤维/环氧树脂预浸层合板结构中,监测热压固化过程中温度、内应力变化以及固化残余应变,分析了残余应变对FBG传感器性能的影响。实验表明FBG传感器可以有效监测复合材料结构固化过程的温度和内应力,以及由温度计算的粘度变化,为智能固化控制提供依据,且固化于复合材料结构内的传感器可用于结构的全服役周期健康监测。  相似文献   

8.
新隧道的施工爆破产生的地震波会影响邻近既有隧道衬砌结构的安全和稳定。结合新建碧鸡关隧道实际工程,应用15只光纤Bragg光栅(FBG)表面应变传感器对既有碧鸡关隧道衬砌表面迎爆侧进行了8次爆破和3次列车通过时的应变监测,研究了爆破对邻近隧道衬砌表面应变变化的影响。2010年6月23日爆破药量为129 kg,爆破量为中等,爆破对衬砌表面的应变产生了明显的波动影响,引起传感器在发生爆破前后出现数据突变,应变最大变化量在35×10-6~43×10-6之间。当列车通过碧鸡关隧道时,衬砌表面的应变变化较小,应变最大变化量在9×10-6~12×10-6之间。  相似文献   

9.
介绍了一种基于STM32微控制器并能够进行远程、实时监测的多通道裂缝位移监测系统.系统包括采集节点和监测中心两部分,采集节点以STM32微控制器为核心,采用线性位移传感器获取裂缝位移信息,经过多通道选择电路、信号调理电路后被STM32微控制器采集、存储进本地U盘,并通过无线传输模块将采集到的数据发送到监控中心;通过采集软件接收采集节点发送的数据,并存储进本地硬盘中.最后通过室内模拟实验和野外应用试验,验证了研制的多通道裂缝位移监测系统工作稳定、可以应用于野外裂缝的实际监测中.  相似文献   

10.
在电力塔架横担长期运营过程中,绝缘横担的应力变化复杂。对横担应力的实时监测是保证塔架横担长期安全稳定的一个重要因素。提出一种可以把横担主材所受应力变化转换成光纤Bragg光栅(FBG)波长移位量的FBG应变传感器应用于变电站的电力塔架上。根据盐津变电站的气候特点,在塔架上下桁架主材表面中心处安装4只应变传感器。针对2011年2月份的气候条件,应变监测范围为-58.05×10-6~-242.52×10-6;同时在监测过程中2011年1月12日上午10点出现降雪、降雨天气,应变监测范围为-93.71×10-6~-3.46×10-6,并在10点4只应变传感器同时出现波动变化。实验表明正常情况下,电缆风舞、降雪、降雨等气候条件主要引起了电力铁塔中横担的形变。  相似文献   

11.
介绍了一种可调光栅的制作方法。首先通过紫外线光刻的方法,制作出微米尺度的光栅结构(周期8μm),然后将光栅复制在聚甲基硅氧烷(PDMS)薄膜上,形成内嵌式PDMS光栅。利用PDMS优异的弹性,将此薄膜沿着光栅栅线的方向拉伸,随着栅线的伸长,光栅常数也随之变小,周期调节极限为5μm。传统方法制作可调光栅,工艺条件苛刻,制作过程复杂,难以控制,制作成本高,周期较长。提出的制作可调光栅的方法成本低,周期短,工艺过程简单易控制,可广泛应用于微型光谱仪、扫描仪、光通信等领域。  相似文献   

12.
在各种光纤传感器中,光纤Bragg光栅(FBG)传感器是近几年来研究的热点。研究光纤光栅传感器的关键问题是光纤光栅的信号解调,即波长微小移位的检测问题。概述了光纤光栅传感器解调原理,并从响应特性分类角度对光纤光栅的几种解调方法进行了分析比较。  相似文献   

13.
利用容栅测量系统中激励信号源的设计技术,产生一组多相输出的调制信号源,作为光栅测量系统的多相线阵光源激励信号,发出的多相调制光信号,再经过标尺光栅调制后,由光电转换元件接收并获得一个复合的电信号.该信号经处理电路后,可获得一个频率与激励信号源的基波频率相等的电信号,检测这两个信号间的相位差的变化,可得到标尺光栅的移动距离x.将容栅和光栅测量技术有机地结合,并通过提高相位检测电路的细分数和减小线阵光源的点距,可达到亚微米或纳米级的测量分辨力.  相似文献   

14.
用闪耀光栅解调的光纤光栅测量振动系统   总被引:1,自引:0,他引:1  
介绍了用闪耀光栅解调的光纤光栅振动监测系统的设计及解调的原理。初步实验研究表明:在固定的频率下,检测振动振幅与振动信号特性吻合得很好,而且成功的将振动信号和温度信号分离。  相似文献   

15.
An investigation showing the performance of compact long period grating (LPG) pairs under demanding experimental conditions, making comparisons with the use of single LPGs for the simultaneous measurement of strain and temperature is presented. In this work, a LPG pair (LPGP) sensor comprising two weak (2.5 dB each) LPGs, 13 mm apart, was compared against the performance of two single LPG sensors (LPG1 & LPG2) with coupling strengths of 2.5 dB and 12.5 dB, respectively. All the LPG sensors used were subjected to extreme conditions arising from the fabrication, by choosing a high amplitude mask period with short physical length LPGs, and the high temperature annealing processes. In addition, a low resolution detection instrument was used to capture the spectra under study. Results have shown that the LPGP is 40 times better than the first single LPG used (LPG1) and three times better than the second LPG (LPG2). Using the error analysis methodology of Brady et al., the temperature and strain errors due to the uncertainty of the wavelength measurement for each of the LPG1, LPG2, and LPGP were compared with the typical performance of various fibre Bragg grating (FBG)-based sensor schemes under similar testing conditions. It was found that LPGPs offer the best performance especially when using low resolution detection instrumentation.  相似文献   

16.
用于鉴别应变/温度的混合光纤光栅传感器的研究􀀁   总被引:1,自引:0,他引:1  
本文首先介绍了光纤光栅应变和温度传感的原理,然后利用长周期光纤光栅和一般均匀周期光纤光栅对应变和温度响应的显著差异,将它们结合起来进行了用于鉴别应变/温度的混合光纤光栅传感器的研究。  相似文献   

17.
常用光纤Bragg光栅特性分析   总被引:1,自引:0,他引:1  
结合光纤Bragg光栅在通信与传感领域应用的特性,利用传输矩阵法分析了均匀光栅、啁啾光栅、切趾光栅的反射率、时延特性、边模抑制比和反射带宽示意图.分析得到了不同光栅的特性规律,这些规律对光栅在通信与传感领域应用具有参考的价值.  相似文献   

18.
Simultaneous multiple wavelength lasing is demonstrated using a novel in-fiber comb fil-ter. The filter is based on a fiber Bragg grating asymmetrically located in a Sagnac loop. Two filters with four band-passes and five band-passes, respectively, were fabricated and applied to an erbium-doped fiber ring laser. Stable four-wavelength and five-wavelength laser operations have been demon-strated.  相似文献   

19.
光纤光栅传感器复用技术述评   总被引:4,自引:0,他引:4  
评述了复用光纤光栅传感器的有关技术,着重讨论了多波长移动探测解调技术。  相似文献   

20.
光纤Bragg光栅与长周期光纤光栅比较及传感应用   总被引:2,自引:0,他引:2  
阐述了光纤Bragg光栅(FBG)与长周期光纤光栅(LPFG)的常用制作方法、原理、特性,并对它们进行了比较,介绍了目前国内外光纤光栅的最新应用,特别是在传感领域的新应用。对今后的研究方向做了预测,适合于不同用途光纤光栅的写入技术有待于进一步提高,通过减小包层直径来改变光纤光栅特性的方法有待于进一步研究和利用,在折射率传感领域光纤光栅会有更广阔的天地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号