共查询到18条相似文献,搜索用时 62 毫秒
1.
不同氮素水平油菜冠层反射光谱特征研究 总被引:8,自引:0,他引:8
2002~2003年油菜生长季节,在浙江大学实验农场设置了4个品种、3个供氮水平处理、3个重复的油菜田间小区试验,测定了不同发育时期的冠层光谱反射率及对应叶片、茎以及角果的鲜重和干重。结果表明:不同供氮水平的油菜冠层和叶片光谱差异明显,冠层光谱反射率随发育期推移,开花前在可见光范围逐渐降低、在近红外区域逐渐增大,开花后在可见光范围逐渐增大,在近红外区域逐渐降低。不同供氮水平的油菜冠层光谱差异明显,4个品种的油菜具有相似的变化规律,在近红外表现尤其明显,随着供氮水平的增加,光谱反射率明显升高;而在可见光波段处,随供氮水平提高,反射率反而降低。前期随发育期推移,NDVI和RVI都逐渐增大,在4月22日达到最大,其中N2和N3在4月14日受开花影响,NDVI和RVI有所降低。4月22日以后,由于后期叶片衰老变黄,NDVI和RVI都逐渐减小。 相似文献
2.
3.
基于HJ星高光谱数据红边参数的冬小麦叶面积指数反演 总被引:1,自引:0,他引:1
针对我国HJ-1A星搭载的高光谱成像仪(HSI)数据,探索基于HJ星高光谱影像的LAI反演研究,本文利用inverted Gaussian模型提取红谷位置、红边位置、红边振幅以及红边斜率4个红边参数,结合2009年4月、5月两期同步地面观测LAI数据,经过回归分析构建了反演叶面积指数的最优红边参数模型.结果表明红边位置、红边斜率和红边振幅与叶面积指数都达到了极显著相关,R2分别为0.5592,0.7796和0.8107说明HJ星高光谱影像数据在叶面积指数反演方面有很大的应用潜力. 相似文献
4.
比较不同株型夏玉米在不同时期的反射光谱差异性,研究分析了红边位置(λred)、红边振幅(Dλred)、最小振幅(Dλmin)及Dλred/Dλmin与叶片全氮含量(LTN),叶绿素含量(Chl)及叶面积指数(LAI)间的相关性,并建立预测模型。结果表明,光谱差异随生育进程呈不同程度的规律性变化。在全生育期,用Dλred/Dλmin能更好地推算LTN,尤其在吐丝期,在开花前用Dλred也佳,在拔节期和喇叭口期用λred也有较高的精度。估算Chl时,在开花前用Dλred较可靠,在喇叭口期和抽雄期用λred也可考虑。估算LAI时,抽雄期后用Dλred推算有较高的可信度,在抽雄期用λred较好,在开花期和吐丝期用Dλred/Dλmin推算更为可靠。 相似文献
5.
比较不同株型夏玉米在不同时期的反射光谱差异性,研究分析了红边位置(λred)、红边振幅(Dλred)、最小振幅(Dλmin)及Dλred/Dλmin与叶片全氮含量(LTN),叶绿素含量(Chl)及叶面积指数(LAI)间的相关性,并建立预测模型。结果表明,光谱差异随生育进程呈不同程度的规律性变化。在全生育期,用Dλred/Dλmin能更好地推算LTN,尤其在吐丝期,在开花前用Dλred也佳,在拔节期和喇叭口期用λred也有较高的精度。估算Chl时,在开花前用Dλred较可靠,在喇叭口期和抽雄期用λred也可考虑。估算LAI时,抽雄期后用Dλred推算有较高的可信度,在抽雄期用λred较好,在开花期和吐丝期用Dλred/Dλmin推算更为可靠。 相似文献
6.
光谱数据变换对玉米氮素含量反演精度的影响 总被引:5,自引:0,他引:5
通过对玉米叶片光谱数据进行6种变换,分析了变换后的光谱值与叶片氮素含量的相关关系,探讨了550 nm和680 nm两波段处不同形式光谱变量对氮素含量反演的精度。结果表明,微分处理(D(R)、D(log(R))和D(N(R)))显著改变了氮素含量与光谱值的相关性,归一化(N(R))次之,对数处理几乎无变化(R与log(R),N(R)与log(N(R)))。不同的变换形式之间,与氮素含量相关性高的,所建立的回归模型的决定系数较高,模型的精度也较高。在波段550 nm和680 nm波段处,光谱数据的归一化对数处理(log(N(R)))能显著提高回归模型对氮素含量的反演精度。 相似文献
7.
分析了在不同氮肥施用水平下,小麦冠层的高光谱响应在几个生育期内的变化情况,以及它们与小麦产量之间的关系。采用微分技术处理了小麦冠层反射光谱,提高了其区分小麦氮素营养水平的灵敏性;利用F-检验及方差分析与相关分析,研究小麦氮素处理水平、冠层反射光谱及其衍生信息(光谱反射率的一阶微分数据、归一化植被指数)、小麦产量三者之间的相关关系。研究结果表明,一阶微分技术能够提高小麦冠层光谱数据对氮素营养水平的响应,光谱数据的衍生形式也可与小麦产量建立很好的回归方程。 相似文献
8.
遥感提取叶绿素含量的方法是精准农业的重要研究方向之一,但是如何用冠层光谱数据有效地提取叶绿素含量仍然是一个难点。本文用光谱指数TCARI和OSAVI的组合建立提取冬小麦冠层叶绿素含量的关系式,并使用实验田获取的冬小麦冠层光谱以及与之同步的机载高光谱传感器OMIS数据进行了验证。通过误差分析讨论了该方法用于遥感高光谱数据时需要注意的问题,表明大气校正的精度,传感器的信噪比以及波段中心的漂移是模型反演精度的主要制约因素。 相似文献
9.
10.
11.
Some red edge parameters( λ red, Min λ 6oo-72o, d λ,red, d λ min, d λ red / d λ min, ∑ d λ 680-750, and λ nir) and the relationship between these parameters and the parameters of biochemistry and biophysics of winter wheat were studied by regression analysis. The results indicated that there existed some changes in these red edge parameters in the whole growth stages,and there were strong correlations between red edge parameters and pramters of biochemistry and biophysics. Thus, the red edge parameters were found valuable for assessment of wheat parameters of biochemistry and biophysics. The λ red can be used to estimate the soluble sugar content and the chlorophyll content. The d λ red was the best estimator of total nitrogen content. LAI can be estimated by Min λ 600-720 satisfactorily. 相似文献
12.
本文通过ASDFR便携式光谱仪对132个风干土壤样品的光谱反射率进行了实验室测定。根据土样光谱反射率变化,获得了褐潮土土壤剖面的不同诊断层反射光谱特征。结果表明,在400~1200nm范围之间,土壤有机质含量与土壤光谱反射率有较好的相关性。利用导数光谱方法建立了预测土壤有机质含量的方程,提出了预测北京地区褐潮土有机质光谱的最佳波段。在波长447nm处采用反射率和A值(反射率倒数的对数)所建立的预测方程的预测精度较高。采用反射率的一阶微分建立的预测方程的最佳波段在516nm处。而A值一阶微分光谱在615nm处相关性最好。作为一项参考指标用光谱分析法评价土壤中有机质含量,以期对精准农业中土壤养分或肥力的预测具有一定的指导作用。 相似文献
13.
对2种不同磷效率基因型小麦幼苗水培结果表明,NO3-N和NH4NO3-N对小麦植株地上部生长的影响无明显差异,但是对根系生长的影响明显不同。NH4-N对小麦幼苗的生长有明显的抑制作用,且对根系生长的抑制程度显著大于对地上部;对磷低效基因型Jing411的抑制程度明显大于对磷高效基因型Xiaoyan54。NH4NO3-N处理有利于提高植株地上部氮含量和植株的氮吸收效率。Xiaoyan54的植株吸氮量在NH4NO3-N处理中最高,Jing411在NO3-N处理中最高。不同处理对营养液pH值的影响明显不同。NH4NO3-N和NH4-N处理导致营养液pH值降低,NO3-N处理使营养液pH值升高,不同磷效率基因型小麦使营养液pH值降低或升高的程度不同。小麦磷效率基因型差异的表现与否和氮素形态有关,以植株地上部干重为磷效率指标的基因型差异在供应NO3-N时不表现。磷高效基因型Xiaoyan54的生长显著优于磷低效基因型Jing411。 相似文献
14.
15.
本研究通过在栗钙土上设置田间试验。研究结果表明:开花期小麦不同器官中氮的积累量随着施氮量的增加而增加,以叶片中积累的氮素量最高,其次为穗>茎>叶鞘,但当施氮量达到450kg/hm2时,单作小麦叶片和间套作小麦叶鞘、茎、穗氮的积累量减少,而且间套作小麦相同施氮量各器官的氮素积累量大于相应单作小麦各器官的氮素积累量。成熟时小麦各营养体氮积累量随着施氮量的增加而增加,颖壳 穗轴氮积累量最多,其次为茎>叶鞘>叶;成熟时籽粒氮素的吸收积累量随着施氮量的增加而增加,间套作小麦籽粒氮素的吸收积累量大于相同施氮量单作小麦氮素的吸收积累量。在同一施氮水平下,间套作小麦花前氮同化量和总氮同化量都大于相应单作小麦,而间套作小麦花后氮同化量却小于相应单作小麦;单作和间套作小麦总氮同化量与其蛋白质含量之间呈显著正相关(r分别为0.936 ,0.987 )。 相似文献
16.
Detection of wheat stripe rust is important for agriculture management and decision,this paper aims to improve detection accuracy of the disease severity of wheat stripe rust by integrating the advantages of reflectance spectroscopy in the detection of crop biochemical parameters and the advantages of chlorophyll fluorescence in photosynthetic physiology diagnosis.Firstly,the solar-induced chlorophyll fluorescence (SIF) at O2-A band (760 nm) was calculated using the 3FLD algorithm,and seven spectral indices sensitive to wheat stripe rust were investigated for estimating the disease severity.Then,three classic statistical modelling methods,including Support Vector Machine (SVM),Stepwise Regression (SR) and BP neural network (BP),were used to quantitatively investigated the performance of the spectral indices and SIF for detection of winter wheat stripe rust severity.The results show that:(1) there is a significantly negative correlation between SIF and the severity of wheat stripe rust.The relationship between SIF and DI can be effectively applied to detect wheat stripe rust.(2) the spectral models based on SIF combined with spectral indices are more accurate than those based on spectral indices.SIF can significantly improve the detection accuracy of the disease severity of winter wheat stripe rust.(3) compared to the SVM and SR methods,the training model constructed by the BP neural network has the highest prediction accuracy whether using the spectral indices or SIF combined spectral indices.However,the verification results show that the disease severity prediction model constructed by SVM and SR method have a better prediction. 相似文献
17.
New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat 总被引:18,自引:0,他引:18
Pengfei Chen Driss Haboudane Jihua Wang Philippe Vigneault 《Remote sensing of environment》2010,114(9):1987-1997
To reduce environment pollution from cropping activities, a reliable indicator of crop N status is needed for site-specific N management in agricultural fields. Nitrogen Nutrition Index (NNI) can be a valuable candidate, but its measurement relies on tedious sampling and laboratory analysis. This study proposes a new spectral index to estimate plant nitrogen (N) concentration, which is a critical component of NNI calculation. Hyperspectral reflectance data, covering bands from 325 to 1075 nm, were collected using a ground-based spectroradiometer on corn and wheat crops at different growth stages from 2005 to 2008. Data from 2006 to 2008 was used for new index development and the comparison of the new index with some existing indices. Data from 2005 was used to validate the best index for predicting plant N concentration. Additionally, a hyperspectral image of corn field in 2005 was acquired using an airborne Compact Airborne Spectrographic Imager (CASI), and the corresponding plant N concentration was obtained by conventional laboratory methods on selected area. These data were also used for validation. A new N index, named Double-peak Canopy Nitrogen Index (DCNI), was developed and compared to the existing indices that were used for N detection. In this study, DCNI was the best spectral index for predicting plant N concentration, with R2 values of 0.72 for corn, 0.44 for wheat, and 0.64 for both species combined, respectively. The validation using an independent ground-based spectral database of corn acquired in 2005, yielded an R2 value of 0.62 and a root-mean-square-error (RMSE) of 2.7 mg N g− 1 d.m. The validation using the CASI spectral information, DCNI calculation was related to actual corn N concentration with a R2 value of 0.51 and a RMSE value of 3.1 mg N g− 1 d.m. It is concluded that DCNI, in association with indices related to biomass, has a good potential for remote assessment of NNI. 相似文献
18.
基于人工神经网络理论,针对高光谱遥感中数据冗余问题,本文建立了基于遗传算法(GA)的广义回归神经网络(GRNN)模型,利用回归分析问题中参数筛选方法,对表征冬小麦叶片全氮的光谱参数进行了筛选,并和线性回归方法对比,线性回归方法的均方根误差(RMSEP):在冬小麦叶片氮含量为34.0g kg-1~62.5g kg-1预测范围内,逐步回归模型为14.4g kg-1,后向选择为11.8g kg-1,而广义回归神经网络为3.40g kg-1。说明神经网络方法所筛选到的光谱参数更能反映小麦叶片全氮含量,且神经网络模型预测精度高。 相似文献