首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以过硫酸铵为催化剂,用不同相对分子质量聚乙二醇(PEG400、800、1000、1500、2000、4000、6000)与氢化双酚A环氧进行加成聚合反应,滴加去离子水制得改性环氧乳液。分别从乳液稳定性、化学结构、耐热性和复合材料表面以及断面形貌和力学性能表征上浆剂乳液及其复合材料性能。结果表明:PEG2000改性环氧乳液上浆剂稳定性与耐温性好,平均粒径0.866μm,经其处理后碳纤维复合材料的力学性能优异,界面结合能力强。  相似文献   

2.
简述了碳纤维上浆剂的分类及作用,重点介绍了碳纳米材料在碳纤维上浆剂中的应用,包括碳纤维上浆剂中碳纳米材料对上浆剂稳定性、碳纤维表面特性及碳纤维复合材料界面性能的作用。碳纤维上浆剂可分为溶剂型、乳液型、水溶性上浆剂,采用上浆法可以通过碳纤维上浆工序直接将碳纳米材料引入碳纤维表面。通过对上浆剂中的碳纳米材料进行改性,引入带同种电荷的官能团,可降低上浆剂乳胶粒子的团聚,提高上浆剂的稳定性,增加碳纤维表面粗糙度和改变碳纤维表面化学组成,增强碳纤维复合材料界面的物理锚定作用与化学键合作用,提高碳纤维复合材料的界面性能。指出通过化学键将改性碳纳米材料接枝到上浆剂主浆料分子上,可以缓解碳纳米材料的团聚,使碳纳米材料更均匀地包裹在碳纤维表面,进一步改善碳纤维表面特性和复合材料界面性能,这是未来碳纳米材料上浆剂研究的重要方向之一。  相似文献   

3.
首先介绍了碳纤维上浆剂的作用及分类,将上浆剂主要分为溶液型、乳液型、水溶型3类并指出了各自的特点。然后综述了上浆剂的制备及其与环氧树脂、聚丙烯、聚醚酮类树脂、聚醚砜、聚偏氟乙烯、聚酰胺等树脂基体的匹配情况,着重介绍了上浆剂对复合材料界面性能的影响。最后指出高性能化、多功能化、进一步细分化将是碳纤维上浆剂未来发展的重点。  相似文献   

4.
本文通过探究用带有不同长碳侧链的丙烯酸酯的聚合物乳液,将该乳液对碳纤维进行上浆处理,制备碳纤维增强聚丙烯复合材料。用红外光谱图分析、扫描电镜、冲击试验机来表征复合材料的力学性能。研究表明,上浆除了能够提升碳纤维与聚丙烯之间的粘接能力。随着上浆剂侧链的生长,CFRPs的冲击强度先增加后降低,CFRPs的缺口冲击强度逐渐降低。  相似文献   

5.
研究一种适用于碳纤维增强热塑性树脂的水性乳液上浆剂。考察了上浆剂的粒度、浸润性、贮存稳定性、耐酸碱稳定性、热稳定性以及上浆后碳纤维的毛丝率;并通过实验对上浆处理前后碳纤维表面形貌的观察和单丝界面剪切强度的分析。结果表明,聚氨酯质量分数为1%和乳化剂质量分数为0.8%的上浆剂,粒径小、分散均匀和具有良好的稳定性,经上浆处理后的碳纤维与树脂基体的界面剪切强度从40.2 MPa提高到了51.9 MPa。  相似文献   

6.
采用不同粒径的上浆剂,测试其粒径,并观察其稳定性;对不同种类的碳纤维进行上浆处理,测试SEM图像、展纱率、毛丝量、复丝拉伸强度、复合材料拉伸强度和层间剪切强度。结果表明:粒径在100 nm以下的上浆剂稳定性最优,放置一年内粒径没有明显变化;粒径在1 000 nm以下的上浆剂在碳纤维表面的分布较均匀;粒径在1 000 nm以下上浆剂的碳纤维的展纱率一般,毛丝量较低;使用粒径在1 000 nm以下上浆剂的碳纤维层间剪切强度较高;使用三种粒径上浆剂的碳纤维拉伸强度相差不明显,说明拉伸强度与上浆剂的关系较小;干喷湿纺碳纤维的层间剪切强度明显低于湿纺碳纤维。  相似文献   

7.
研究了不同含量下一种单组分上浆剂及三种复合型上浆剂对碳纤维表观性能的影响,通过对碳纤维宽度、硬度、摩擦系数、毛丝量、开纤性、复合材料界面结合形貌等的分析比较,得出碳纤维表观性能与上浆剂种类及含量的关联性变化规律,并结合TOARYT700SC-12K测试值给出适合于工业生产的参考值,生产中上浆剂含量一般控制在1.0±0.3%,碳纤维(T300/700-12K)的表观性能一般控制在:宽度为7±1mm,硬度为10±2cm,摩擦系数为0.16±0.05,开纤性为2.0±0.3,毛丝量不高于3mg;结果进一步表明多组分复合型上浆剂在碳纤维获得可控的表观性能上优于单一组分上浆剂,为碳纤维表观性能的可控方法提供借鉴。  相似文献   

8.
国内外碳纤维上浆剂研究现状   总被引:2,自引:0,他引:2  
本文分析了碳纤维上浆剂的研究现状,概述了上浆剂的种类、性质及上浆量对复合材料层间剪切强度的影响;同时也总结了上浆处理中碳纤维表面性质及树脂基体性能对复合材料层间剪切强度的影响。  相似文献   

9.
测试并比较了某国产上浆剂和进口上浆剂的黏度、表面张力、粒径等性能,研究了两种碳纤维上浆剂对聚丙烯腈基碳纤维表面形貌、耐磨性、水接触角、表面能、拉伸强度等性能的影响.结果表明,国产上浆剂固含量高、黏度高、粒径小,进口上浆剂黏度低、表面张力小、粒径分布窄.采用国产上浆剂上浆后的碳纤维,接触角为56.701°,毛丝量为0.1...  相似文献   

10.
正本发明公开了一种耐高温的乳液型碳纤维上浆剂及其制备方法和用途,该耐高温的乳液型碳纤维上浆剂含有2%~40%的耐高温的环氧树脂、0~97.5%的水和0.5%~15%的表面活性剂,所述耐高温的环氧树脂是指分子中含有至少两个环氧基的化合物。本发明的上浆剂具有耐高温的特性,用本发明的上浆剂上浆的碳纤维,在制成碳纤维复合材料后,碳纤维与基体树脂之间起到界  相似文献   

11.
论述了炭纤维复合材料中的炭纤维上浆剂。先介绍了上浆剂的作用和分类,然后重点综述了炭纤维上浆剂国内外研究现状,最后就乳液型炭纤维上浆剂做了介绍。  相似文献   

12.
The Graphene oxide (GO) sheets were used for preparing the epoxy resin Pickering emulsion. The particle size and the zeta potential of the Pickering emulsion were measured to evaluate its stability. The stable emulsion could be served as the film former of sizing agent for carbon fiber (CF). The effect of the Pickering emulsion stabilized by GO sheets on the properties of CF and the interfacial adhesion property of CF reinforced composite were investigated. Scanning electron microscopy (SEM) images showed that there existed a layer of sizing agent film with GO sheets evenly on the CF surface. Abrasion resistance and stiffness values of CF were tested and the results indicated that the sized CF conformed to the requirement of CF handleability. The interlaminar shear strength (ILSS) test indicated that the interfacial adhesion of the composite could be greatly improved. The fracture surfaces of CF composites were examined by SEM after ILSS tests. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42285.  相似文献   

13.
《合成纤维》2017,(2):36-38
探索了不同类型国产上浆剂对碳纤维接触角、表面能、耐磨性、表面微观形态等物理特性的影响。结果表明:使用YJ上浆剂的碳纤维的硬挺度、耐磨性比使用FD、HIT的好,使用HIT上浆剂的碳纤维的外观、丝束幅宽比YJ的好。  相似文献   

14.
The mechanical performance of advanced composite materials depends to a large extent on the adhesion between the fiber and matrix. This is especially true for maximizing the strength of unidirectional composites in off-axis directions. The materials of interest in this study were PAN-based carbon fibers (XA and A4) used in combination with a thermoset (EPON 828 epoxy) and a thermoplastic (liquid crystal poymer) matrix. The effect of surface treatment and sizing were evaluated by measuring the short-beam shear (SBS) and transverse flexural (TF) tensile strengths of unidirectional composites. Results indicated that fiber surface treatment improves the shear and trasverse tensile strengths for both thermosetting and thermoplastic matrix/carbon fiber-reinforced unidirectional composites. A small additional improvement in strengths was observed as the result of sizing treated fibers for the epoxy composites. Scanning electron microscope photomicrographs were used to determine the location of composite failure, relative to the fiber-matrix interface. Finally, the epoxy composites SBS and TF strengths appear to be limited to the maximum transeverse tensile strength of the epoxy matrix, while the thermoplastic composite SBS and TF strengths are limited by the LCP matrix shear and transverse tensile strengths, respectively.  相似文献   

15.
Vinyl ester resin emulsion type sizing agent (HMSA‐1) was synthesized by phase inversion emulsification method. Centrifugal sedimentation analysis, particle size analysis, Fourier transforms infrared spectroscopy (FTIR), and gel permeation chromatography were used to characterize HMSA‐1 and Japanese commercial sizing agents (JSA‐1 and JSA‐2). Meanwhile, abrasion resistance, fluffs and breakage, stiffness, scanning electron microscope (SEM) were used to analyze the workability in later process of carbon fiber and surface morphology. The results showed that HMSA‐1 could significantly improve handling characteristics of carbon fiber. SEM micrographs demonstrated that the sized carbon fiber had smooth surface. HMSA‐1 had better compatibility with vinyl ester resin. The interlaminar shear strength (ILSS) of HMSA‐1 sized carbon fiber/vinyl ester resin composite reached the maximum value of 45.96 MPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The effect of the concentration of the sizing agent on performances of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were applied to characterize carbon fiber surface topographies. At the same time, the single fiber strengths and Weibull distribution were also studied. The interlaminar shear strength and hygrothermal ageing test have been used to study the effect of fiber coatings on the interface of the composites. The analysis of the results shows that the sizing level is essential for improving the surface of carbon fibers and its composite performance. Different concentrations of the sizing agent have different contributions to the wetting performance of carbon fibers. Among the three concentrations of sizing agent studied (1 wt %, 1.5 wt %, and 2 wt %), the optimal sizing level is 1.5 wt %. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 125:425–432, 2011  相似文献   

17.
An aqueous suspension deposition method was used to coat the sized carbon fibers T700SC and T300B with commercially carboxylic acid-functionalized and hydroxyl-functionalized carbon nanotubes (CNTs). The CNTs on the fiber surfaces were expected to improve the interfacial strength between the fibers and the epoxy. The factors affecting the deposition, especially the fiber sizing, were studied. According to single fiber-composite fragmentation tests, the deposition process results in improved fiber/matrix interfacial adhesion. Using carboxylic acid-functionalized CNTs, the interfacial shear strength was increased 43% for the T700SC composite and 12% for the T300B composite. The relationship between surface functional groups of the CNTs and the interfacial improvement was discussed. The interfacial reinforcing mechanism was explored by analyzing the surface morphology of the carbon fibers, the wettability between the carbon fibers and the epoxy resin, the chemical bonding between the fiber sizing and the CNTs, and fractographic observation of cross-sections of the composites. Results indicate that interfacial friction, chemical bonding and resin toughening are responsible for the interfacial improvement of nanostructured carbon fiber/epoxy composites. The mechanical properties of the CNT-deposited composite laminate were further measured to confirm the effectiveness of this strategy.  相似文献   

18.
The glass fiber/PPS composite has excellent thermal and chemical properties. The main disadvantage of the composite is its poor mechanical resistance to impact. To improve this property, the fibers were coated with a new type of sizing. The equired characteristics for this sizing is to create strong interactions between the PPS matrix and the glass fiber surface. The ability of the sizings to improve the glass/PPS adhesion has been assessed by the microbond technique. An inconvenience of this technique is the difficulty in defining a parameter that is characteristic of the interfacial adhesion. The objective of this publication is to demonstrate that a plastic flow of the PPS matrix around the fiber leads to a uniform shear strength. The adhesion between these two materials can therefore be obtained by the mean interfacial shear strength.  相似文献   

19.
What might happen with the interphase region of composite if the sizing agent cannot afford the attack of processing temperature and firstly reacted before its combination with the resin, is rarely reported. On the basis of this, herein, effects of sizing reaction on the interphase region of composite were investigated, as well as on the carbon fiber surface properties. It showed that the interfacial shear strength of carbon fiber/epoxy composite was improved after the sizing reaction. The interphase modulus was also increased with a thinner gradient distance. Further analysis indicated that the fiber surface roughness increased, the fiber wettability with the resin lowered, and the chemical reactions between sizing agent and resin reduced after 200°C/2 h treatment on carbon fiber. These results explained the change of the interphase region, which are meaningful for sizing optimization. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41917.  相似文献   

20.
The rubber interlayer method was chosen in order to improve the properties of carbon fiber‐reinforced polybenzoxazine composites. The resin used is benzoxazine based on bisphenol‐A, formaldehyde and 3,5‐xylidine. The effect of rubber concentration on the flexural properties of the composites is investigated. Sized and desized carbon fiber woven fabrics are used to study the effect of the sizing materials on the mechanical properties. The delamination toughness of the composites is increased by the ATBN rubber interlayer with increasing ATBN concentration. The strength of the composite also increased, but an anomalous concentration effect has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号