首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an efficient computational method of dynamic stress history calculation for a general three-dimensional flexible body by combining flexible multibody dynamic simulation and quasi-static finite element analysis (FEA). In the dynamic simulation of flexible multibody systems, flexible components can undergo nonsteady gross motion and small elastic deformation that is described with respect to the body reference frame by using the assumed mode method. D'Alembert inertia loads from the gross body motion and the elastic deformation are expressed as a combination of space-dependent and time-dependent terms that are obtained from the dynamic simulation. D'Alembert inertia loads that are associated with each unit value of the time-dependent terms are then distributed to all finite element nodes in order to compute a corresponding stress influence coefficient through quasi-static structural analyses. Total dynamic stresses due to D'Alembert inertia loads are obtained by multiplying actual magnitude of time-dependent terms with the associated stress influence coefficients. By the proposed method, it is shown that, for a general three-dimensional component, the required number of FEAs can be significantly reduced.  相似文献   

2.
Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems.  相似文献   

3.
Passenger cars, transit buses, railroad vehicles, off-highway trucks, earth moving equipment and construction machinery contain structural and light-fabrications (SALF) components that are prone to excessive vibration due to rough terrains and work-cycle loads’ excitations. SALF components are typically modeled as flexible components in the multibody system allowing the analysts to predict elastic deformation and hence the stress levels under different loading conditions. Including SALF component in the multibody system typically generates closed-kinematic loops. This paper presents an approach for integrating SALF modeling capabilities as a flexible body in a general-purpose multibody dynamics solver that is based on joint-coordinates formulation with the ability to handle closed-kinematic loops. The spatial algebra notation is employed in deriving the spatial multibody dynamics equations of motion. The system kinematic topology matrix is used to project the Cartesian quantities into the joint subspace, leading to a condensed set of nonlinear equations with minimum number of generalized coordinates. The proposed flexible body formulation utilizes the component mode synthesis approach to reduce the large number of finite element degrees of freedom to a small set of generalized modal coordinates. The resulting reduced flexible body model has two main characteristics: the stiffness matrix is constant while the mass matrix depends on the elastic modal coordinates. A consistent set of pre-computed inertia shape integrals are identified and used to update the modal mass matrix at each time step. The implementation of the component mode synthesis approach in a closed-loop recursive multibody formulation is presented. The kinematic equations are modified to include the effect of the flexible body modal elastic coordinates. Also, modified constraint equations that include the effect of flexibility at the joint connections and the necessary details of the Jacobian matrix are presented. Baumgarte stabilization approach is used to stabilize the constraint equations without using iterative schemes. A sample results for flexible body impeded in a closed system will be presented to demonstrate the above mentioned approach.  相似文献   

4.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

5.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

6.
An optimization methodology that iteratively links the results of multibody dynamics and structural analysis software to an optimization method is presented to design flexible multibody systems under dynamic loading conditions. In particular, rigid multibody dynamic analysis is utilized to calculate dynamic loads of a multibody system and a structural optimization algorithm using equivalent static loads transformed from the dynamic loads are used to design the flexible components in the multibody dynamic system. The equivalent static loads, which are derived from equations of motion, are used as multiple loading conditions of linear structural optimization. A simple example is solved to verify the proposed methodology and the pelvis part of the biped humanoid, a complex multibody system which consists of many bodies and joints, is redesigned using the proposed methodology.  相似文献   

7.
When performing modal analyses of active flexible multibody systems, both controller effects and flexible body dynamics should be included in a multidisciplinary system model. This paper deals with the theory of solving the closed-loop eigenvalue problem for active flexible multibody systems with multiple-input multiple-output proportional-integral-derivative (PID) type feedback controllers and multiple degrees of freedom finite element models. Modal analyses are performed on both a simple and complex active flexible multibody system in order to illustrate the difference between current modal analysis method for such systems and the proposed theory derived in this paper.  相似文献   

8.
The multibody systems analysis has become one of the main simulation techniques to calculate the elasto-kinematics characteristics of a car suspension under wheel loads or to realize complex full vehicle models in order to predict the handling performances or the NVH quality. The modelling of torsion beam rear suspensions—widely adopted in cars belonging to B or C class—presents some problems arising from the structural behaviour of this component. A linear method based on component mode synthesis was used to represent the flexible torsion beam within the multibody model. This kind of approach was compared with a non-linear FE analysis. The elasto-kinematics analysis of the suspension was performed by using SIMPACK multibody code. The main suspension parameters (toe angle, camber angle, wheelbase and track variation) were calculated by changing wheel travel and loads. Static analyses, involving great displacements, were performed and a different number of modes were considered in the modal condensation of the torsion beam. The results of multibody simulations were compared with those obtained from a non-linear FE model. Different stiffness values of the bushings that connect the torsion beam to the vehicle chassis were taken into account.  相似文献   

9.
This paper is concerned with the efficient dynamic analysis of flexible multibody systems using a robust coordinate reduction technique. Unlike conventional static correction, the formulation is derived by dynamic correction that considers the inertia effect. In this formulation, the constraint and fixed-interface normal modes, which are representative modes in the typical coordinate reduction, are corrected by considering the truncated modal effect with the residual flexibility. Therefore, the proposed method can offer a more precise reduced system without increasing the dimension, which consequently leads to a more accurate and efficient flexible multibody simulation. We implement here the proposed method under augmented formulations of the floating reference frame approach, and test its performance with numerical examples.  相似文献   

10.
The introduction of moving loads in the Floating Frame of Reference Formulation is presented. We derive the kinematics and governing equations of motion of a general flexible multibody system and their extension to moving loads. The equivalence of convective effects with Coriolis and centripetal forces is shown. These effects are measured numerically and their significance in moving loads traveling at high speed is confirmed. A method is presented to handle discontinuities when moving loads separate from the flexible structure. The method is extended from beam models to general flexible structures obtained by means of the Finite Element Method. An interpolation method for the deformation field of the modal representation of these bodies is introduced.The work is concluded by application of the method to modern mechanical problems in numerical simulations.  相似文献   

11.
Flexible multibody dynamics (FMD) has found many applications in control, analysis and design of mechanical systems. FMD together with the theory of structural optimization can be used for designing multibody systems with bodies which are lighter, but stronger. Topology optimization of static structures is an active research topic in structural mechanics. However, the extension to the dynamic case is less investigated as one has to face serious numerical difficulties. One way of extending static structural topology optimization to topology optimization of dynamic flexible multibody system with large rotational and transitional motion is investigated in this paper. The optimization can be performed simultaneously on all flexible bodies. The simulation part of optimization is based on an FEM approach together with modal reduction. The resulting nonlinear differential-algebraic systems are solved with the error controlled integrator IDA (Sundials) wrapped into Python environment by Assimulo (Andersson et al. in Math. Comput. Simul. 116(0):26–43, 2015). A modified formulation of solid isotropic material with penalization (SIMP) method is suggested to avoid numerical instabilities and convergence failures of the optimizer. Sensitivity analysis is central in structural optimization. The sensitivities are approximated to circumvent the expensive calculations. The provided examples show that the method is indeed suitable for optimizing a wide range of multibody systems. Standard SIMP method in structural topology optimization suggests stiffness penalization. To overcome the problem of instabilities and mesh distortion in the dynamic case we consider here additionally element mass penalization.  相似文献   

12.
This paper presents a method for improving dynamic solutions that are obtained from the dynamic simulation of flexible multibody systems. The mode-acceleration concept in linear structural dynamics is utilized in the proposed method for improving accuracy in the postprocessing stage. A theoretical explanation is made on why the proposed method improves the dynamic solutions in the context of the mode-acceleration method. A mode-acceleration equation for each flexible body is defined and the load term in the right hand side of the equation is represented as a combination of space-dependent and time-dependent terms so that efficient computation of dynamic solutions can be achieved. The load term is obtained from dynamic simulation of a flexible multibody system and a finite element method is used to compute dynamic solutions by quasi-static analyses. Numerical examples show the effectiveness of the proposed method.  相似文献   

13.
Simulation and prediction of eigenfrequencies and mode shapes for active flexible multibody systems is an important task in disciplines such as robotics and aerospace engineering. A challenge is to accurately include both controller effects and flexible body dynamics in a multidisciplinary system model appropriate for modal analysis. A method for performing modal analyses of such systems in a finite element environment was recently developed by the authors. On issue is, however, that for engineers working in a finite element environment, the controller properties are not always explicitly available prior to modal analyses. The authors encountered this problem when working with the design of a particular offshore windmill. The controller for the windmill was delivered in the form of a dynamic link library (dll) from a third party provider, and when performing virtual testing of the windmill design, it was of great importance to use the “real” controller in the form of the provided dll, rather than re-model it in for instance Simulink or EASY5. This paper presents a method for estimating the controller parameters of PID-type controllers when solving the closed-loop eigenvalue problem for active flexible multibody systems in a finite element environment. The method is based on applying incremental changes, perturbations, to relevant system variables while recording reactions from other system variables. In this work, the theory of the method is derived and the method is tested through several numerical examples.  相似文献   

14.
Design sensitivity analysis of flexible multibody systems is important in optimizing the performance of mechanical systems. The choice of coordinates to describe the motion of multibody systems has a great influence on the efficiency and accuracy of both the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation (ANCF) are frequently utilized to describe flexibility, however, only the former has been used in design sensitivity analysis. In this article, ANCF, which has been recently developed and focuses on modeling of beams and plates in large deformation problems, is extended into design sensitivity analysis of flexible multibody systems. The Motion equations of a constrained flexible multibody system are expressed as a set of index-3 differential algebraic equations (DAEs), in which the element elastic forces are defined using nonlinear strain-displacement relations. Both the direct differentiation method and adjoint variable method are performed to do sensitivity analysis and the related dynamic and sensitivity equations are integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity equations is proposed. With this approach, the system sensitivity equations are constructed by assembling the element sensitivity equations with the help of invariant matrices, which results in the advantage that the complex symbolic differentiation of the dynamic equations is avoided when the flexible multibody system model is changed. Besides that, the dynamic and sensitivity equations formed with the proposed method can be efficiently integrated using HHT-I3 method, which makes the efficiency of the direct differentiation method comparable to that of the adjoint variable method when the number of design variables is not extremely large. All these improvements greatly enhance the application value of the direct differentiation method in the engineering optimization of the ANCF-based flexible multibody systems.  相似文献   

15.
A method for the recovery of stresses in reduced elastic multibody systems is presented. Elastic coordinates of a flexible body belonging to a reduced elastic multibody system are therefore premultiplied with a matrix of shape functions for stresses. Whereas the classic procedures for stress recovery in elastic multibody systems use shape functions for stresses that belong to eigenmodes and particular modes, this work also investigates shape functions for stresses that are derived from a Krylov-subspace projection. The presented method for stress recovery is implemented in a process chain containing different software tools and allows the evaluation of stresses during the runtime of the elastic multibody simulation. Accordingly, the performance of the developed process is examined with the help of a simple example. Results show that the usage of shape functions for stresses that are derived from a Krylov-subspace projection can improve the approximation of stresses in a user-defined frequency range.  相似文献   

16.
17.
A method of reducing the system matrices of a planar flexible beam described by an absolute nodal coordinate formulation (ANCF) is presented. In this method, we focus that the bending stiffness matrix expressed by adopting a continuum mechanics approach to the ANCF beam element is constant when the axial strain is not very large. This feature allows to apply the Craig–Bampton method to the equation of motion that is composed of the independent coordinates when the constraint forces are eliminated. Four numerical examples that compare the proposed method and the conventional ANCF are demonstrated to verify the performance and accuracy of the proposed method. From these examples, it is verified that the proposed method can describe the large deformation effects such as dynamic stiffening due to the centrifugal force, as well as the conventional ANCF does. The use of this method also reduces the computing time, while maintaining an acceptable degree of accuracy for the expression characteristics of the conventional ANCF when the modal truncation number is adequately employed. This reduction in CPU time particularly pronounced in the case of a large element number and small modal truncation number; the reduction can be verified not only in the case of small deformation but also in the case of a fair bit large deformation.  相似文献   

18.
在实际工程领域中存在着大量接触碰撞等非连续动力学问题,现有的解决柔性多体系统连续动力学过程的建模理论与方法,已经无法解决或无法很好解决这些问题.本文基于变拓扑思想,提出了附加接触约束的柔性多体系统碰撞动力学建模理论;通过设计柔性圆柱杆接触碰撞实验,验证了所提出附加约束接触碰撞模型的有效性;针对柔性多体系统全局动力学仿真面临时间和空间的多尺度问题,提出多变量的离散方法,从而提高了柔性多体系统非连续动力学的仿真效率.  相似文献   

19.
One important issue for the simulation of flexible multibody systems is the reduction of the flexible body’s degrees of freedom. In this work, nonmodal model reduction techniques for flexible multibody systems within the floating frame of reference framework are considered. While traditionally in the multibody community modal techniques in many different forms are used, here other methods from system dynamics and mathematics are in the focus. For the reduction process, finite element data and user inputs are necessary. Prior to the reduction process, the user first needs to choose boundary conditions fitting the chosen reference frame before defining the appropriate in- and outputs. In this work, four different possibilities of modeling appropriate interface points to reduce the number of inputs and outputs are presented.  相似文献   

20.
Transfer matrix method for linear multibody system   总被引:4,自引:0,他引:4  
A new method for linear hybrid multibody system dynamics is proposed in this paper. This method, named as transfer matrix method of linear multibody system (MSTMM), expands the advantages of the traditional transfer matrix method (TMM). The concepts of augmented eigenvector and equation of motion of linear hybrid multibody system are presented at first to find the orthogonality and to analyze the responses of the hybrid multibody system using modal method. If using this method, the global dynamics equation is not needed in the study of linear hybrid multibody system dynamics. The MSTMM has a small size of matrix and higher computational speed, and can be applied to linear multi-rigid-body system dynamics, linear multi-flexible-body system dynamics and linear hybrid multibody system dynamics. This method is simple, straightforward, practical, and provides a powerful tool for the study on linear hybrid multibody system dynamics. This method can be used in the following: (1) Solve the eigenvalue problem of linear hybrid multibody systems. (2) Obtain the orthogonality of eigenvectors of linear hybrid multibody systems. (3) Realize the accurate analysis of the dynamics response of linear hybrid multibody systems. (4) Find the connected parameters between bodies used in the computation of linear hybrid multibody systems. A practical engineering system is taken as an example of linear multi-rigid-flexible-body system, the dynamics model, the transfer equations and transfer matrices of various bodies and hinges; the overall transfer equation and overall transfer matrix of the system are developed. Numerical example shows that the results of the vibration characteristics and the response of the hybrid multibody system received by MSTMM and by experiment have good agreements. These validate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号