首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
铜冶炼渣中含有铜、铁等有价金属,其中铜金属可通过直接浮选回收,但铁的矿物组成复杂,很难直接通过磁选回收。以含铁38.76%、含铜2.26%的铜冶炼渣为研究对象,在矿石性质研究基础上,以烟煤为还原剂,通过直接还原焙烧—磁选工艺回收铜渣中的铜、铁。结果表明,铜冶炼渣、烟煤和还原助剂氧化钙以100∶25∶20的质量比混合,在焙烧温度1 200 ℃,焙烧时间80 min的条件下直接还原焙烧铜渣;焙砂在磨矿细度为-0.045 mm含量占80%,磁场强度为111 kA/m的条件下进行磁选试验,最终可获得铁品位为91.54%,铁回收率为90.54%,铜品位为6.06%、铜回收率为89.04%的含铜铁精矿,研究结果可为铜冶炼渣的回收利用提供依据。  相似文献   

2.
铜冶炼渣中铁含量达30%~40%,但铁元素主要以铁橄榄石的形式存在,采用传统方法难以回收利用。以可再生生物炭为还原剂,通过深度还原—磁选回收铜冶炼渣中的铁,考察了还原条件对铜冶炼渣深度还原的影响。当还原温度为1 200 ℃、还原时间为75 min、CaO用量10%、碳氧摩尔比为1.5时,深度还原产品的金属化率达到86.83%,经过磨矿磁选可获得铁品位为62.84%、回收率为81.92%的磁选精矿。铜冶炼渣中主要含铁矿物有Fe2SiO4、Fe3O4及少量的Fe2O3,其还原过程为Fe2SiO4→FeO→Fe、Fe2O3→Fe3O4→FeO→Fe,得到的金属铁逐渐聚集长大最终形成有利于磁选分离的金属铁颗粒。  相似文献   

3.
为解决国内某铜渣的开发利用问题,以兰炭为还原剂、白云石为添加剂,采用模拟转底炉直接还原-磨矿-磁选工艺,对有价元素铁、锌的回收及杂质硫的脱除进行了研究。结果表明:在兰炭用量为25%,白云石用量为10%,还原温度为1 300 ℃,还原时间为35 min情况下,直接还原过程的锌脱除率为99.14%,可获得ZnO含量为79.59%的氧化锌粉,金属化球团经磨矿、磁选后,获得了铁品位为92.79%、铁回收率为88.12%、硫含量为0.08%的金属铁粉。机理分析表明,铜渣中的铁橄榄石、磁铁矿相大部分已转变为金属铁相,金属铁颗粒明显聚集长大,最大粒度超过100 μm,且与脉石矿物等存在清晰平滑的界面,有利于后续磨矿、磁选工序得到高品位的金属铁粉。  相似文献   

4.
为解决国内某铜渣的开发利用问题,以兰炭为还原剂、白云石为添加剂,采用模拟转底炉直接还原—磨矿—磁选工艺,对有价元素铁、锌的回收及杂质硫的脱除进行了研究。结果表明:在兰炭用量为25%,白云石用量为10%,还原温度为1 300 ℃,还原时间为35 min情况下,直接还原过程的锌脱除率为99.14%,可获得ZnO含量为79.59%的氧化锌粉,金属化球团经磨矿、磁选后,获得了铁品位为92.79%、铁回收率为88.12%、硫含量为0.08%的金属铁粉。机理分析表明,铜渣中的铁橄榄石、磁铁矿相大部分已转变为金属铁相,金属铁颗粒明显聚集长大,最大粒度超过100 μm,且与脉石矿物等存在清晰平滑的界面,有利于后续磨矿、磁选工序得到高品位的金属铁粉。  相似文献   

5.
王红玉  李克庆  倪文  黄晓燕  贾岩 《金属矿山》2012,41(11):141-144
某二次铜渣铁含量较高,主要以铁橄榄石、磁铁矿等形式存在,难以用传统的选矿方法回收。采用深度还原-磁选工艺对该二次铜渣中铁回收的工艺技术条件进行了探讨,结果表明,在深度还原褐煤用量为20%、氧化钙用量为8.9%、还原温度为1 250 ℃、还原时间为3 h,还原产品磨矿细度为-0.074 mm占70%、弱磁选磁场强度为60.8 kA/m条件下,可获得铁品位为93.64%、回收率为88.08%的优质磁选铁粉,其杂质含量较低,可作为耐候钢的优质原料。  相似文献   

6.
湖北某铜冶炼厂电炉渣浮选铜后的尾渣,Fe品位为35.37%,Mo品位为0.30%,其中铁主要以磁铁矿和铁橄榄石形式存在,钼存在形式复杂,以氧化物为主,同时与铜渣中Si、Fe等之间形成化学键。若采用 直接磁选回收铁,常规浮选回收钼,铁与钼均不能被有效回收。为使铜渣中的铁与钼资源可最大化回收再利用,以煤粉作还原剂,氧化钙与氧化铝作造渣剂,采用熔融直接还原工艺制备铁钼合金,从而一并回收铜渣 中的铁和钼。探讨了还原温度、还原时间、煤粉用量、氧化钙用量、氧化铝用量等因素对Fe、Mo在合金中的回收率及品位的影响。结果表明在还原温度1 400 ℃、还原时间60 min、煤粉用量、氧化钙用量、氧化铝用 量分别是铜渣量的20%、20%、10%等优化条件下,Fe、Mo在合金中回收率分别为89.03%、98.44%,品位分别为91.70%、0.86%。  相似文献   

7.
湖北某铜冶炼厂电炉渣浮选铜后的尾渣,Fe品位为35.37%,Mo品位为0.30%,其中铁主要以磁铁矿和铁橄榄石形式存在,钼存在形式复杂,以氧化物为主,同时与铜渣中Si、Fe等之间形成化学键。若采用 直接磁选回收铁,常规浮选回收钼,铁与钼均不能被有效回收。为使铜渣中的铁与钼资源可最大化回收再利用,以煤粉作还原剂,氧化钙与氧化铝作造渣剂,采用熔融直接还原工艺制备铁钼合金,从而一并回收铜渣 中的铁和钼。探讨了还原温度、还原时间、煤粉用量、氧化钙用量、氧化铝用量等因素对Fe、Mo在合金中的回收率及品位的影响。结果表明在还原温度1 400 ℃、还原时间60 min、煤粉用量、氧化钙用量、氧化铝用 量分别是铜渣量的20%、20%、10%等优化条件下,Fe、Mo在合金中回收率分别为89.03%、98.44%,品位分别为91.70%、0.86%。  相似文献   

8.
马松勃 《矿冶》2015,24(1):26-30
研究了某镍冶炼炉渣深度还原过程中铁的还原特性及金属铁的生成及成长过程,重点讨论了还原温度、还原时间和氧化钙添加剂对金属铁生成及成长的影响。研究结果表明,适当的提高还原温度、延长还原时间和添加一定量氧化钙都有利于金属铁的生成及长大;在反应过程中还原出的金属铁以小液滴聚集成大液滴的方式逐渐汇集,经过水萃降温处理后以固态铁颗粒的形式存在于还原物料中,铁颗粒的形成过程可分为还原成铁、聚集成滴、冷却成粒3个阶段。  相似文献   

9.
采用高温快速还原焙烧-磁选工艺从铜冶炼渣回收铁, 系统研究了碱度(CaO/SiO2)、还原温度、还原时间、还原剂用量等因素对磁选金属铁粉质量的影响。结果表明, 铜渣中的铁主要以铁橄榄石形式存在, 其次为磁铁矿; 在碱度(CaO/SiO2)0.6、焦粉配比12%、还原温度1 300 ℃、还原时间30 min、铜渣粒度-0.074 mm粒级占95%、磁场强度0.08 T的条件下, 可得到铁品位91.10%、金属化率94.27%的金属铁粉。  相似文献   

10.
以高铁煤泥为新型还原剂, 直接还原褐铁矿。通过与无烟煤对比, 探索了还原剂用量、还原温度和还原时间对褐铁矿直接还原的影响。采用X射线衍射(XRD)和扫描电镜(SEM)等手段, 研究了褐铁矿原矿及其煤泥球团在不同温度下的物相和形貌。结果表明:煤泥用量25%, 经1 200 ℃直接还原20 min后, 可得到金属化率 86.4%的金属化球团。在直接还原反应中, 不仅包括铁氧化物向金属铁的还原, 而且存在中间产物与脉石反应生成铁橄榄石和铁尖晶石再还原生成金属铁, 金属铁在产物中主要以金属铁颗粒的形式存在, 渣铁相界面分明, 最佳状况下渣相中检测不到铁氧化物, 煤泥中的铁氧化物随反应的进行被还原为金属铁, 一定程度上提高了球团金属化率。  相似文献   

11.
以无烟煤作还原剂,经过配料、圆盘造球、转底炉直接还原和磨矿-磁选工艺流程,从国内某铜渣中回收铁、锌,先后进行了基础实验和中试研究。所得最佳还原条件为:铜渣∶无烟煤∶石灰石∶工业纯碱=100∶21.5∶10∶1,还原温度1 280 ℃,还原时间38 min;转底炉排出的金属化球团的磨选条件为:一段磨矿细度-0.074 mm粒级占75.88%,磁场强度143.31 kA/m,二段磨矿细度-0.074 mm粒级占62.89%,磁场强度95.54 kA/m。基于上述条件经过转底炉直接还原流程,金属化球团磁选得到金属铁粉TFe品位92.38%,铁回收率88.39%;布袋收尘系统所得粉尘中氧化锌含量为74.25%。机理研究表明,铜渣中的硅酸铁和磁铁矿经过转底炉还原后转变为金属铁,易于通过磨矿-磁选的方法回收。  相似文献   

12.
采用直接还原技术研究了印尼某海滨砂矿弱磁选精矿的综合利用, 考察了助还原剂NCP用量、还原剂烟煤用量、还原温度、还原时间等条件对铁还原效果的影响。结果表明: 在NCP用量 7.5%, 烟煤用量17.5%, 还原温度1 150 ℃, 还原时间90 min的条件下进行直接还原, 再经磨矿-弱磁选所得的粉末铁精矿TFe品位可达91.06%, 回收率达97.27%, 同时得到富钒钛渣, 为进一步利用钒和钛创造了条件。  相似文献   

13.
直接还原焙烧—弱磁选回收河南某金冶炼渣中铁   总被引:1,自引:0,他引:1  
王威  柳林  冯安生  刘红召  高照国 《金属矿山》2015,44(12):169-172
河南某黄金冶炼渣铁品位为27.24%,铁主要以赤铁矿的形式存在。为回收该渣中铁,采用直接还原焙烧—弱磁选工艺进行试验。结果表明:在还原剂焦煤加入量为15%、氧化钙加入量为5%、焙烧温度为1 150℃、焙烧时间为80 min、焙烧产品磨细至-0.045 mm占75%、弱磁选磁场强度为60 k A/m时,可以获得铁品位为91.4%、回收率为79.5%的铁精矿,实现了该黄金冶炼渣中铁的高效回收。  相似文献   

14.
汪云华 《矿冶工程》2013,33(4):91-93
对内配碳-电炉固态还原-球磨-强磁选-尾矿酸化氧化浸出五氧化二钒工艺进行了研究, 讨论了不同的还原剂以及还原剂用量、还原温度、还原时间等因素对固态还原钒钛磁铁矿的影响。研究结果表明, 最佳的工艺参数为: 有机粘结剂用量为2%、无烟煤还原剂用量为矿量的30%、还原时间60 min、还原反应温度1200 ℃、磁选场强0.12 T、磁选尾渣浸出硫酸浓度为25%、液固比4∶1、氯酸钠氧化剂用量为尾矿质量的5%、浸出温度为常温、浸出时间180 min。此条件下, 磁选铁精矿经800 ℃氢还原30 min后, 所得铁粉金属铁品位大于96%, 达到化工铁粉质量要求。磁选尾渣经氧化浸出后, 溶液中五氧化二钒的浸出率大于76%, 浸出渣即钛精矿品位大于37%。  相似文献   

15.
摘 要 辽宁某黄金冶炼企业氰化尾渣中铁、铅含量分别为35.93%、3.88%,具有一定的综合回收价值。针对此尾渣开展了还原焙烧—熔分法回收铁和铅的试验研究,重点考察了焙烧温度、焙烧时间、还原剂用量 和添加剂用量对铁金属化率和铅挥发率的影响。结果表明,在焙烧温度为1 250 ℃、焙烧时间为60 min、焦粉用量为20%、CaO用量为25%的条件下,氰化尾渣的铁金属化率和铅挥发率分别达到99.85%和95.92%;X射线 衍射和扫描电镜分析结果表明,添加剂CaO可以促进焙烧过程中铁还原、铅挥发和金属铁颗粒的聚集长大,并且具有一定的脱硫作用。将焙烧渣在1 600 ℃下熔分1 h,可获得TFe品位达90.02%、硫含量为0.016%、铁回 收率为88.92%的铁锭。熔分渣的各项毒性浸出指标远低于控制标准,实现了氰化尾渣的无害化、资源化利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号