首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However, the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD. Another problem with the activated sludge process is that large amount of waste activated sludge is produced, which needs further treatment. In this study, the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions, and the results were compared with those using acetic acid as the carbon source. The use of alkaline fermentation liquid not only affected the transformations of phosphorus, nitrogen, intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid. It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However, the former resulted in higher removal efficiencies for phosphorus (95%) and nitrogen (82%), while the latter showed lower ones (87% and 74%, respectively). The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency. Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source, which was responsible for its higher nitrogen removal efficiency. It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic followed by alternating aerobic-anoxic sequencing batch reactor.  相似文献   

2.
Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated com stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L· h) and a yield of 86.31 %, In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L·h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from com stover.  相似文献   

3.
Pestalotiopsis sp. J63, producing a high activity of laccase, is a new marine-derived fungus isolated from the oceanic sediment of the East China Sea. Since the marine environment is oligotrophic nutrient, marine de-rived fungi may use small amount of nutrients to grow and produce laccases. Agricultural residues that are mainly composed of lignin, cellulose and hemicellulose are difficult to be degraded and few microbes can take them as sub-strates, so they are considered as oligotrophic nutrient and have the potential to be used to produce value added products. In this study, the ability of Pestalotiopsis sp. J63 to use agricultural residues to produce laccases was tested in the submerged fermentation. The combination of 3 g·L-1 maltose and 20 g·L-1 rice straw was the best car-bon sources and 8 g·L-1 ammonium sulfate was the best nitrogen source under the condition without inducers. The effects of five inducers, the feeding time and concentration of inducer on laccase production were investigated. Adding 0.09 mmol·L-1 phenol after 24 h of incubation led to high laccase activity (5089 U·L-1), while with 0.09 mmol·L-1 phenol in the medium and wheat bran as the nitrogen source, the laccase activity could reach 5791.7 U·L-1. Native-PAGE results showed that two laccase isozymes were present in the cultures. One existed in both in-duced and non-induced culture filtrates, while the other was only found in the fermentation with the addition of phenol, guaiacol and veratryl alcohol.  相似文献   

4.
To achieve higher antibiotic streptolydigin productivity through metabolic regulation, propionate was fed during the fermentation of Streptomyces lydicus AS 4.2501. The effects of propionate feeding on streptolydigin production and intracellular fluxes were investigated. The highest streptolydigin production yield of 95.10mg·L^-1 was obtained when 2mmol·L^-1 of sodium propionate was added at 60h of cultivation into shake-flask culture. This yield is 23.06% higher when compared to that of a batch culture without propionate supplementation. It was also found that when propionate was added, much more organic acids were excreted. Metabolic flux analysis was performed and it demonstrated that the carbon fluxes of the pentose phosphate pathway and the anaplerotic reaction were significantly increased after propionate feeding. The carbon flux from pyruvate to acetyl-CoA was determined to be 24.7, which was 12.27% higher than that in the batch culture. This study indicated that the glucose-6-phosphate and pyruvate nodes were potential bottlenecks for increasing streptolydigin productivity. Potential targets and strategies that could be manipulated through genetic and process engineering to increase the production of streptolydigin were also suggested.  相似文献   

5.
Recombinant E. coli BL 21 was cultivated in high cell density to produce human-like collagen. The effects of the feeding of nitrogen source, controlled by an auto on/off-feeding mode with two different cycles of 0.5min and 4min intervals, oxygen-enrichment methods and inducement strength on the cell yield and human-like collagen production were investigated. The studies showed that nitrogen source feeding in fast cycle could result in higher human-like collagen production than that in slow cycle; and the feedback regulation of glucose, increase of the pressure of fermentation bioreactor, and supply of oxygen-enriched air could all increase cell yield and human-like collagen production. The effects of inducement strength on protein expression were found important. When OD600 reached 90-100, the cultivation temperature was increased to 42℃ to begin induction for 2-3 h, and then shifted to 39℃ for 5-6h induction, the cell density and human-like collagen production could reach 96g·L-1 [DCW (dry cell mass)  相似文献   

6.
To reduce the manufacturing cost of fumaric acid production by fermentation, four kinds of raw starchy materials were investigated, cassava powder, corn powder, degermed corn powder and starch. By comparing the nitrogen contents in them, carbon/nitrogen ratio of raw materials was the key factor affecting the fumaric acid production by Rhizopus oryzae. Based on this point, degermed corn powder was selected as the best raw starchy material for fumaric acid production. In addition, the simultaneous saccharification and fermentation (SSF) process for fumaric acid production was optimized. With degermed corn powder as substrate at 100 g/L total sugar concentration, the fumaric acid production (35.51 g/L), yield (0.355 g/g) and productivity (0.493 [g/(L.h)]) were obtained via SSF process in a 7-L fermentor.  相似文献   

7.
原位氮饥饿发酵工艺中梯度补氮对谷氨酰胺合成酶的调控   总被引:4,自引:1,他引:3  
The effects of uniform and gradient fed nitrogen on glutamine synthetase (GS), glutamate dehydrogenase(GDH) and glutamate synthase ((K)GAT)were investigated in glutamine production by fermentation of Corynebacterium glutamicum NS611 after 3 h of in-situ nitrogen starvation. It was shown that the strain in the later growth phase entered naturally into in-situ nitrogen starvation by controlling the initial concentration of urea and the biomass was slightly decreased. The pH value reached 6.5 again in the culture system, which confirmed the beginning of nitrogen starvation in the culture system. After 3 h nitrogen starvation the activity of GS was increased over two folds and the time of high activity of GS persisted three folds longer in the gradient fed nitrogen system than that in the normal fed batch. The higher activity of GDH was also maintained. The glutamine production increased by 72 % than the original technology of nitrogen starvation and the time of fermentation was shortened by above 12 h.  相似文献   

8.
5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 rain in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 rain. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g.L-1 (72 mmol.L-1), which is the highest yield in the fermentation broth reported up to now.  相似文献   

9.
Propanoic acid accumulated in an ethanol-methane coupled fermentation process affects the ethanol fermentation by Saccharomyces cerevisiae. The effects of propanoic acid on ethanol production were examined in cassava mash under different pH conditions. Final ethanol concentrations increased when undissociated propanoic acid was <30.0 mmol·L-1 . Propanoic acid, however, stimulated ethanol production, as much as 7.6% under proper conditions, but ethanol fermentation was completely inhibited when undissociated acid was >53.2 mmol·L-1 . Therefore, the potential inhibitory effect of propanoic acid on ethanol fermentation may be avoided by controlling the undissociated acid concentrations through elevated medium pH. Biomass and glycerol production decreased with propanoic acid in the medium, partly contributing to increased ethanol concentration.  相似文献   

10.
The absorption process in acrylic acid production was water-intensive. The concentration of acrylic acid before distillation process was low, which induced to large amount of wastewater and enormous energy consumption.In this work, a new method was proposed to concentrate the side stream of absorption column and thus increase the concentration in bottom product by electrodialysis. The influence of operating conditions on concentration rate and specific energy consumption were investigated by a laboratory-scale device. When the voltage drop was 1 V·cP~(-1)(1 cP=10~(-3) Pa·s), flow velocity was 3 cm·s~(-1) and the temperature was 35 °C, the concentration rates of acrylic acid and acetic acid could be 203.3% and 156.6% in the continual-ED process. Based on the experimental data, the absorption process combined with ED was simulated, in which the diluted solution from ED process was used as spray water and the concentrated solution was feed back to the absorption column. The results shown that the flow rate of spray water was decreased by 37.1%, and the acrylic acid concentration at the bottom of the tower was increased by 4.56%. The ions exchange membranes before and after use 1200 h were tested by membrane surface morphology(scanning electron microscope), membrane chemical groups(infrared spectra), ion exchange capacity, and membrane area resistance, which indicated the membrane were stable in the acid system. This method provides new method for energy conservation and emission reduction in the traditional chemical industry.  相似文献   

11.
The aim of this study was to investigate production of l-lactic acid from molasses and chicken feather protein hydrolysate (CFP) by the newly isolated Rhizopus oryzae TS-61. R. oryzae TS-61 was capable of utilizing molasses sucrose and CFP as carbon and nitrogen sources, respectively. In contrast to yeast extract and ammonium sulfate, CFP had potential not only to prevent excessive pH changes and foaming but also to provide smaller uniform pellet formation in during fermentation. Thanks to these properties, it was concluded that CFP might have resulted in higher l-lactic acid production than the other two nitrogen sources (yeast extract and ammonium sulfate). At the end of 42-h optimal cultivation period, the highest (38.5 g/L) and lowest (28.8 g/L) concentrations of l-lactic acid were obtained with CFP and ammonium sulfate, respectively. This is the first report on use of waste chicken feather as a lactic acid production substrate. In addition, a new R. oryzae strain, being capable of using molasses sucrose as carbon source in order to produce l-lactic acid, was isolated.  相似文献   

12.
l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.  相似文献   

13.
本实验室筛选的菌株Bacillus subtilis NX-2以葡萄糖和谷氨酸共同作为碳源生产g-聚谷氨酸(g-PGA). 为探讨这2种碳源在g-PGA合成中的作用,在培养基中加入标记的[U-13C]-葡萄糖,检测产物g-聚谷氨酸的核磁共振碳谱信号强度,从而计算葡萄糖代谢进入产物的量. 在培养基中葡萄糖浓度为4%时,g-PGA的碳骨架中由葡萄糖进入的比例为9%左右. 当葡萄糖浓度为3%时,由葡萄糖进入g-PGA的比例降至6%. 证明葡萄糖主要用于能量代谢和菌体合成,只有少量参与g-PGA合成,而谷氨酸为g-PGA单体的主要来源.  相似文献   

14.
豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸   总被引:9,自引:0,他引:9  
采用细菌厌氧发酵法生产L-乳酸,由实验确定了最佳接种量、发酵温度和pH调节剂,考察了初始葡萄糖浓度对L-乳酸生产的影响,确定初始糖浓度为70~90 g/L时得率、产率、最终生物量分别达到92.68 g/g, 3.17 g/(L×h)和8.5′107 mL-1. 为进一步降低L-乳酸生产成本,以豆粕水解液为氮源代替酵母粉,同时应用流加发酵技术,L-乳酸产量、得率、产率及转化率分别达到155 g/L, 95.5 g/g, 1.64 g/(L×h)和96.9%. 在保证L-乳酸最终浓度的同时可降低生产成本,为进一步工业化奠定了基础.  相似文献   

15.
考察了甘蔗糖蜜替代昂贵葡萄糖作为碳源、乳清粉替代大部分酵母粉作为氮源时,对Actinobacillus succinogenes NJ113发酵制备丁二酸的影响。血清瓶厌氧发酵结果证明:对照组(葡萄糖40 g/L)的丁二酸产量仅为26.04 g/L,而以糖蜜为碳源(以总还原糖计算为40 g/L)时,丁二酸产量达到28.27 g/L,比对照组提高了8.57%。在此基础上,以糖蜜为碳源、不同比例的乳清粉和酵母粉为混合氮源发酵制备丁二酸,确定了糖蜜、乳清粉和酵母粉混合使用的最佳浓度分别为40 g/L、8 g/L和2 g/L。此外,在3 L发酵罐体系中添加40 g/L糖蜜、8 g/L乳清粉、2 g/L酵母粉进行发酵试验,实验结果证明:丁二酸终产量达到32.54 g/L,收率达到81.13%。  相似文献   

16.
比较了休哈塔假丝酵母NLP21、树干毕赤酵母NLP22、NLP23和NLP31,在30 g/L的木糖和混合糖(葡萄糖15 g/L+木糖15 g/L)发酵培养基上以及在培养基中氮源浓度降低到原来1/2和1/10时的发酵性能。结果表明,在30 g/L木糖发酵培养基上,NLP23和NLP31产乙醇质量浓度最高,分别为(11.14±0.13)和(11.15±0.08) g/L。在15 g/L葡萄糖+15 g/L木糖混合糖发酵培养基上,NLP31产乙醇质量浓度最高,为(10.91±0.12) g/L。当发酵培养基中氮源浓度降低到原来的1/2时,NLP23和NLP31产乙醇能力相当,但后者产木糖醇的量增大;当氮源质量浓度降低到原来的1/10时,NLP23和NLP31产乙醇能力随着发酵轮数的增加,逐渐下降,氮源浓度低,降低了乙醇的产量。  相似文献   

17.
BACKGROUND: Lactic acid has many applications in the chemical industries and it can be produced economically by microorganisms using biomass raw materials of different origins. Sweet sorghum juice is a high sugar content raw material with potential for lactic acid production because after hydrolysis of its sucrose content the remaining glucose and fructose can supply the carbon demand of most lactic acid bacteria. However, satisfying the nitrogen and B‐vitamin needs of the bacteria by supplementation with yeast extract and/or other alternative nitrogen‐containing supplements can make the process too expensive. RESULTS: Using a statistical optimization process much of the yeast extract can be replaced by a cheaper alternative nitrogen source, namely wheat gluten. This resulted in a fermentation with 99% lactic acid yield and 3.04 g L?1 h?1 volumetric productivity. CONCLUSION: Using response surface methodology (RSM) media optimization was performed for lactic acid fermentation with an industrially acceptable result, reducing the costs of raw materials by half, replacing yeast extract by an alternative nitrogen source and applying yeast extract only as a source of micro‐elements (vitamins, salts, etc.) Copyright © 2010 Society of Chemical Industry  相似文献   

18.
For fermentative production of gentamicins by Micromonospora purpurea it was necessary to adjust the initial pH value of the medium to 7.0–7.5. Glucose was the preferred carbon source. The production of gentamicins was performed in two steps. The first step was to grow the microbial cells and the second step was to inoculate the fermentation medium with the growing cell culture (6.0% v/v). The organism produced more antibiotic with organic nitrogen sources than with inorganic nitrogen source. Fodder yeast (50 and 40% total nitrogen) was a good nitrogen source both for microbial growth and the antibiotic production. The suitable concentrations of fodder yeast (50 and 40%) were 2 and 6 g/1 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号