首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology.  相似文献   

2.
This paper introduces a novel modelling approach to geometric skeleton computation enabling concurrent product engineering and assembly sequence planning. Current engineering vision has recently moved towards new modelling and management paradigms to maintain competitive edges all along the product lifecycle. Consistent with concurrent engineering and design for X stakes, this recent shift promotes cross-X and knowledge-intensive philosophies in the product development process, principally focused on lifecycle engineering.The main objective of this research is to integrate assembly process engineering information and knowledge in the early phases of the product development process in a top-down and proactive manner, in order to provide a geometric skeleton-based assembly context for designers. The definition of the product and its related assembly sequence requires both the enhancement and the entire understanding of product relationships between the various product components, and its related assembly rationale. As a consequence, this new modelling approach highlights the need to integrate various stakeholders’ viewpoints involved in the beginning of the product lifecycle. In such a context, earlier work has achieved the early generation of an optimal assembly sequence in the product development process, before the product geometry is completely defined. As a result, previous research has made possible to control and bind the product modelling phase through an assembly oriented product structure.The aim of the proposed approach is to compute and define a geometric skeleton model based on product relational information and the early-defined assembly sequence. The proposed approach–called SKeLeton geometry-based Assembly Context Definition (SKL-ACD)–enables the control of the product modelling phase by introducing skeleton entities consistent with product relationships and assembly sequence planning information. A prototype application within a CAD tool has been developed for aiding geometric skeleton computation and generation. Lastly, an industrial case study is introduced to highlight the feasibility and the relevance of the proposed modelling approach.  相似文献   

3.
This paper introduces an innovative framework for product design and assembly process planning reconciliation. Nowadays, both product lifecycle phases are quasi concurrently performed in industry and this configuration has led to competitive gains in efficiency and flexibility by improving designers’ awareness and product quality. Despite these efforts, some limitations/barriers are still encountered regarding the lack of dynamical representation, information consistency and information flow continuity. It is due to the inherent nature of the information created and managed in both phases and the lack of interoperability between the related information systems. Product design and assembly process planning phases actually generate heterogeneous information, since the first one describes all information related to “what to be delivered” and the latter rationalises all information with regards to “how to be assembled”. In other words, the integration of assembly planning issue in product design requires reconciliation means with appropriate relationships of the architectural product definition in space with its assembly sequence in terms of time. Therefore, the main objective is to provide a spatiotemporal information management framework based on a strong semantic and logical foundation in product lifecycle management (PLM) systems, increasing therefore actors’ awareness, flexibility and efficiency with a better abstraction of the physical reality and appropriate information management procedures. A case study is presented to illustrate the relevance of the proposed framework and its hub-based implementation within PLM systems.  相似文献   

4.
The integration of design and planning of flexible assembly system has been recognized as a tool for achieving efficient assembly in a production environment that demands assembly with a high degree of flexibility. This paper proposes a concurrent intelligent approach and framework for the design of robotic flexible assembly systems. The principle of the proposed approach is based on the knowledge Petri net formalisms, incorporating Petri nets with more general problem-solving strategies in AI using knowledge-based system techniques. The complex assembly systems are modeled and analyzed by adopting a formal representation of the system dynamic behaviors through knowledge Petri net modeling from the specifications and the analysis of those models. A template is first defined for a knowledge Petri net model, and then the models for assembly system individuals are established in the form of instances of the template. The design of assembly systems is implemented through a knowledge Petri net-based function–behavior–structure model. The research results show that the proposed knowledge Petri net approach is applicable for design, simulation, analysis and evaluation, and even layout optimization of the flexible assembly system in an integrated intelligent environment. The integration of assembly design and planning process can help reduce the development time of assembly systems.  相似文献   

5.
Knowledge-based systems are proving to be a powerful tool with great potential for developing intelligent design support environments to improve quality of products and reduce product development costs by eliminating or minimizing many of the trial-and-error iterations involved in product development. This article describes an approach towards the development of intelligent design support environments for mechanical transmission systems, along with implementation details of a distributed knowledge-based gearing design and manufacturing system that is deployed over the Internet. The system embodies the various tasks of the design process, with modules that address: performance evaluation, process optimization, manufacturability analysis, and provides reasoning and decision-making capabilities for reducing the time between gear tooth creation, detailed design and final production. This methodology is highly desirable in that it is able to simulate real working conditions, evaluate and optimize the design effectively, prevent designers from time-consuming iterations and reduce long and expensive test phases.  相似文献   

6.
A note on the use of STEP for interfacing design to process planning   总被引:2,自引:0,他引:2  
T.  H. 《Computer aided design》2002,34(14):1075-1085
This short note demonstrates the use of standard for exchange of product data (STEP) for interfacing design to process planning via a compact feature recogniser. The methodology used in development of the interface (feature recogniser) makes use of both automatic feature-recognition and feature-based design technologies in order to combine their advantages, and the STEP for the non-problematic and full information exchange. Using the abilities of the STEP, a generic configuration scheme is developed in which the features are treated as a combination of faces to which geometrical and/or technical information is glued (associated). By this way, the designer is only forced to identify the functional parts of the features when designing the part, which may simplify the component design and result in the effective memory utilisation. The feature recogniser was implemented in C on a PC and tested on a large number of examples with positive results.  相似文献   

7.
Assemblability analysis and evaluation plays a key role in assembly design, operation analysis and planning. In this paper, we propose an integrated intelligent approach and framework for evaluation of assemblability and assembly sequence for electro-mechanical assemblies (EMAs). The approach integrates the STEP (STandard for the Exchange of Product model data, officially ISO 10303)-based assembly model and XML schema with the fuzzy analytic hierarchy process for assembly evaluation. The evaluation structure covers not only the geometric and physical characteristics of the assembly parts but also the assembly operation data necessary to assemble the parts. The realization of the integration system is implemented through a multi-agent framework. Through integration with the STEP-based product modeling agent system, CAD agent system and assembly planning agent system, the developed assembly evaluation agent system can effectively incorporate, exchange, and share concurrent engineering knowledge into the preliminary design process so as to provide users with suggestions for improving a design and also helping obtain better design ideas. The applications show that the proposed approach and system are feasible. Received: July 2004 / Accepted: January 2006  相似文献   

8.
In this paper, we deal with an assembly line production system in which an automated guided vehicle (AGV) delivers parts to each workstation of assembly lines from a miniload automated storage/retrieval system (AS/RS). Each assembly production line is characterized by a sequence of workstations linked together for the production of a given type of product. We consider simultaneously the design problem of miniload AS/RS and the problem of determining a unit load size of the AGV. First, a non-linear mathematical model is formulated under a proposed AGV dispatching policy. And then, we determine an appropriate sequence of lines of the vehicle visits. Finally, based on the characteristics of the objective function and feasible region of the decision variables, a heuristic solution procedure is developed to find a near optimal solution. To examine the validity of the model, an example problem is solved.  相似文献   

9.
Computer aided process planning (CAPP) systems have had limited success in integrating business functions and product manufacturing due to the inaccessibility and incompatibility of information residing in proprietary software. While large companies have developed or purchased complex order management and engineering applications, smaller manufacturers continue to use semi-automated and manual methods for managing information throughout the lifecycle of each new product and component. There is a need for reconfigurable and reprogrammable systems that combine advances in computer aided design (CAD/Computer Aided Manufacturing (CAM) technology and intelligent machining with product data management for documentation and cost control. The goal of this research is to demonstrate an architecture in which customer service, CAPP and a costing methodology known as activity based costing (ABC) are incorporated into a single system, thereby allowing companies to monitor and study how expenditures are incurred and which resources are being used by each job. The material presented in this paper is the result of a two year university and industry sponsored research project in which professors and students at the Costa Rica Institute of Technology developed a software application for FEMA Industrial S.A., a local machining and fabrication shop with sixty five employees and both conventional and CNC capabilities. The final results represent not only a significant contribution to local industry and to the students’ education but, also to the continuing growth of CAPP. Implementing better decision making tools and standardizing transactions in digital format would reduce the workload on critical personnel and archive valuable knowledge for analyzing company methods and expertise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号