首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic oxidation of a representative volatile organic compound, benzene, with ozone at a low temperature was investigated. A nanoporous MCM-48 material with a high specific surface area was used as the support for the catalytic oxidation for the first time. Mn, which has high activity at a low temperature, was used as the metal catalyst. To examine the effect of the Mn precursor, MCM-48 was impregnated with two different Mn precursors: Mn acetate and Mn nitrate. The characteristics of the synthesized catalysts were analyzed by Brunauer Emmett Teller surface area, X-ray diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction. MCM-48 impregnated with Mn acetate showed higher catalytic activity than MCM-48 impregnated with Mn nitrate. This result was attributed to the better dispersion within nanoporous MCM-48 and higher oxygen mobility of Mn oxides produced by Mn acetate. The catalytic activity was also shown to depend closely on the ozone concentration.  相似文献   

2.
吴军良  夏启斌  刘治猛  李忠 《功能材料》2012,43(10):1332-1335,1340
采用等体积浸渍法制备了MnOx/γ-Al2O3、FeOx/γ-Al2O3和CuOx/γ-Al2O3催化剂,测定了不同催化剂在低温等离子体场内分解甲苯的活性,用X射线衍射(XRD)、氢气程序升温还原(H2-TPR)技术对催化剂进行表征。结果表明催化剂分解甲苯的活性的顺序是MnOx/γ-Al2O3>FeOx/γ-Al2O3>CuOx/γ-Al2O3。催化剂分解臭氧的实验表明,不同催化活性组分对臭氧的催化分解性能顺序与对甲苯的分解性能顺序是一致的。MnOx/γ-Al2O3催化剂的Mn负载量对其催化活性有明显影响,Mn的含量为1%(质量分数)时,催化剂的活性最高,当能量密度为19J/L时,其对甲苯催化氧化的转化率接近100%。催化剂表征结果表明当Mn含量为1%(质量分数)时,氧化锰在载体γ-Al2O3上最接近单层分散量,此时活性组分与载体表面的相互结合力最强,在载体上有很好的分散性,从而表现出对甲苯分解的最好性能。  相似文献   

3.
李欣  刘海勇  夏启斌  刘治猛  蒋欣  李忠 《功能材料》2012,(10):1357-1360
以TiO2为载体,采用浸渍法制备了不同配比的MnCe复合型催化剂,并采用X射线衍射(XRD)、氧气的程序升温脱附(O2-TPD)和氢气的程序升温还原(H2-TPR)对制备的催化剂进行表征,比较了催化剂催化氧化(燃烧)甲苯的活性。研究结果表明,所制备的催化剂MnCe(y)Ox/TiO2对甲苯有明显的催化活性。当Ce/(Mn+Ce)的摩尔比为0.1时,催化剂MnCe(0.1)Ox/TiO2的催化活性最高,甲苯的转化率达到90%时的温度为254℃。在催化剂MnOx/TiO2中掺杂少量的Ce元素,有利于活性组分Mn物种在载体表面上以更小颗粒而且更高的分散度存在,从而提高催化剂的催化活性。  相似文献   

4.
锰基催化剂具有较高的催化活性,且成本低,在选择性催化还原(SCR)尾气中的NO_x领域具有广阔应用前景。介绍了锰基低温SCR催化剂处理NO_x的最新进展。锰基催化剂可分为两类:锰氧化物催化剂和锰基掺杂过渡金属氧化物催化剂。针对锰氧化物催化剂,主要分析了锰的氧化价态、结晶形态、比表面积以及形态学对催化效果的影响;对于锰基掺杂过渡金属氧化物催化剂,重点分析了掺杂物对催化剂的催化能力、催化温度范围、N_2的选择性和抗SO_2、H_2O毒化能力的影响。最后在总结全文的基础上,展望了锰基催化剂的应用前景。  相似文献   

5.
Mn-Ni/TiO2 catalysts were prepared using a joint precipitation method with acid-dissolved titanium slag as raw material for selective catalytic reduction of nitrogen oxide. The joint precipitation method was accomplished with different precipitants, such as sodium hydroxide, carbamide, ammonia, or hydrogen peroxide. The deNOx activities of the catalysts prepared by different precipitants were investigated with SCR activity reactor within temperatures of 90–350°C. It is evident that the Mn-Ni/TiO2 catalyst with carbamide-ammonia-hydrogen peroxide as precipitant has superior catalytic activity, which the NO conversion can reach 90% at 120°C, with a wider temperature window (120–300°C) for the NH3-SCR reaction. H2-TPR results showed that the reduction potential of MnOx species on Mn-Ni/TiO2 catalysts is increased compared to that of Mn/TiO2 catalysts. Oxygen mobility is enhanced by interaction between Ni and Mn atoms due to use of carbamide-ammonia peroxide as precipitant. XPS results suggest that the presence of MnO2 is the major phase in nickel-doped Mn/TiO2 catalysts. Our NH3-TPD results illustrated that the catalysts have a lot of acid-active sites, which lead to attracting more ammonia to participate in the catalytic reaction.  相似文献   

6.
MnOx-doped carbon nanotube (MnOx-CNTs) catalysts for the oxygen reduction reaction (ORR) were fabricated using a simple electrochemical deposition method. MnOx-CNTs (0.85 wt % MnOx) could exhibit an improved electrocatalytic activity, long-term stability and excellent resistance to crossover-effect compared to Pt/C catalysts. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction analysis confirm that the MnOx in the MnOx-CNTs exists in an amorphous state. Moreover, compared to the catalytic performances of MnOx on other substrates, the MnOx-CNTs exhibit a high ORR activity. X-ray photoelectron spectroscopy results suggest that the electron transfer, from the CNTs to the Mn ions occurs and the high positive charge is generated on the MnOx-CNT surface. This is believed to be origin of the catalytic activity observed in the ORR using MnOx-CNTs.  相似文献   

7.
Catalytic oxidation of gaseous benzene with ozone was carried out over supported manganese oxides to investigate the factors controlling the catalytic activities. The rate for benzene oxidation linearly increased with the surface area of catalyst, regardless of the kinds of catalyst support, whereas the ratio of ozone decomposition rate to benzene oxidation rate was larger for SiO(2)-supported catalyst than Al(2)O(3)-, TiO(2)-, and ZrO(2)-supported catalysts. The rate for benzene oxidation and CO(x) selectivity increased with the reaction temperature (22-100 degrees C) and were improved by the addition of water vapor to reaction gases. Benzene conversion and carbon balance increased with ozone concentration.  相似文献   

8.
A simple and green method of depositing monometallic (Ru, Rh, Pd) and bimetallic nanoparticles (Ru-Rh, Ru-Pd and Rh-Pd) on an ordered mesoporous silica support (MCM-41) in supercritical carbon dioxide (scCO2) is described. Metal acetylacetonates were used in the experiments as CO2-soluble metal precursors. Suitable temperature and pressure conditions for synthesizing each kind of nanoparticles were applied in this study. The characterizations of these nanocomposites were performed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The nanoparticles had average sizes varying from 2 nm to 8 nm. The Ru nanoparticles were clearly shown to be inside the mesopores of MCM-41 from the TEM image. These nanocomposites used as catalysts for hydrogenation was demonstrated. The efficiency of the scCO2 prepared Ru/MCM-41 catalyst was nearly 8 times than that of a Ru/MCM-41 catalyst prepared by conventional impregnation method.  相似文献   

9.
氨选择性催化还原(NH3-SCR)技术需要进一步研发在相对较低温度(<300℃)下具有良好催化活性、高稳定性及环境友好的脱硝催化材料。本工作采用草酸共沉淀法制备Mn-Fe-O催化材料,并对其进行不同含量CeO2修饰,用于低温NH3-SCR脱硝催化反应。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、氮气吸附-脱附、X射线光电子能谱(XPS)、程序升温还原或脱附(H2-TPR、NH3-TPD)等手段对催化剂进行了表征。催化结果表明,在相同反应条件下适量CeO2修饰后的Mn-Fe-O样品比纯Mn-Fe-O表现出更优异的NH3-SCR脱硝催化性能,在80℃时NO转化率在95%以上,且具有较高的N2选择性。CeO2修饰提高了Mn-Fe-O氧化物表面的Fe^3+、Mn^3+和Mn4+含量及表面酸性位点数量,从而有助于NH3的吸附及催化反应的进行,并且Fe^2+/Fe^3+、Mn^2+/Mn^3+/Mn^4+以及Ce^3+/Ce^4+电子对之间的相互氧化还原反应提高了催化剂的氧化还原能力及稳定性。  相似文献   

10.
采用活性炭还原KMnO4制备MnOx/AC催化剂,利用SEM、XPS对其进行表征。结果表明,Mn以MnO2的形式存在于活性炭表面。辊压成型法制成MnOx/AC电极,以所制MnOx/AC电极为阴极、Ti/RuO2电极为阳极,对苯酚废水进行电解氧化处理,研究了电流密度、电极间距离、初始pH值、电解质溶液浓度等因素对处理效果...  相似文献   

11.
The catalytic oxidation of aromatic hydrocarbons over supported metal oxide   总被引:9,自引:0,他引:9  
The catalytic activity of metals (Cu, Mn, Fe, V, Mo, Co, Ni, Zn)/gamma-Al2O3 was investigated to bring about the complete oxidation of benzene, toluene and xylene (BTX). Among them, Cu/gamma-Al2O3 was found to be the most promising catalyst based on activity. X-ray diffraction (XRD), Brunauer Emmett Teller method (BET), electron probe X-ray micro analysis (EPMA) and temperature programmed reduction (TPR) by H2 were used to characterize a series of supported copper catalysts. Increasing the calcination temperature resulted in decreasing the specific surface areas of catalysts and, subsequently, the catalytic activity. Copper loadings on gamma-Al2O3 had a great effect on catalytic activity, and 5 wt.% Cu/gamma-Al2O3 catalyst was observed to be the most active, which might be contributed to the well-dispersed copper surface phase. Using TiO2 (anatase), TiO2 (rutile), SiO2 (I) and SiO2 (II) as support instead of gamma-Al2O3, the activity sequence of 5 wt.% Cu with respect to the support was gamma-Al2O3 > TiO2 (rutile) > TiO2 (anatase)>SiO2 (I) > SiO2 (II), and this appeared to be correlated with the distribution of copper on support rather than with the specific surface area of the catalyst. The smaller particle size of copper, due to its high dispersion on support, had a positive effect on catalytic activity. The activity of 5 wt.% Cu/gamma-Al2O3 with respect to the VOC molecule was observed to follow this sequence: toluene > xylene > benzene. Increasing the reactant concentration exerted an inhibiting effect on the catalytic activity.  相似文献   

12.
Catalytic oxidations of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) with ozone on the transition metal oxides (iron oxide or manganese oxide) at the temperature range of 120-180 degrees C were investigated. These two catalysts were prepared by precipitation methods. Iron oxide has a higher surface area (330 m(2)/g) than manganese oxide (53 m(2)/g). In the absence of ozone, the removal efficiencies of PCDD/Fs achieved with iron oxide or manganese oxide were between 83% and 85%, while the destruction efficiencies were only between 20% and 25% at 180 degrees C. It indicates that adsorption was the main removal mechanism of PCDD/Fs over these two catalysts. On the other hand, ozone addition greatly enhanced the catalytic activity of iron oxide or manganese oxide catalysts on the oxidation of gaseous PCDD/Fs. At 180 degrees C, the destruction efficiencies of gaseous PCDD/Fs achieved with iron oxide or manganese oxide with 100 ppm O(3) exceeded 90%. It indicates that catalytic ozonation achieved with iron oxide or manganese oxide is effective in decomposing PCDD/Fs and the application of ozone lowers the reaction temperature of PCDD/F oxidation below 200 degrees C. Furthermore, the synergistic effect of iron oxide and ozone is superior to that of manganese oxide due to the fact that the surface of iron oxide has more hydroxyl groups, which easily form hydrogen bonds with ozone and decompose to form atomic oxygen for the further reaction with dioxin molecules.  相似文献   

13.
采用浸渍法,以Al2O3为载体,制备了氧化镍和氧化锰复合的双组分负载型金属催化臭氧化催化剂.以松花江江水中UV254的去除率作为催化剂活性指标,通过正交试验,寻找催化剂的最佳制备工艺.实验结果表明:催化剂的最佳制备工艺为浸渍3h,活性组元体积比1:1,90℃干燥2h,400℃焙烧4h.通过扫描电镜对催化剂结构进行了表征;通过TG-DTA测试,分析了催化剂的热分解过程中反应速率、热效应和物质变化过程;运用XPS分析了催化剂表面元素的组成情况,催化剂的主要活性成分为MnO2.  相似文献   

14.
Nanoplates of Mn3O4 were prepared by redox reactions of Mn(CH3COO)2 x 4H2O taking place in short chain n-alkylamine aqueous solutions such as n-butylamine, n-propylamine and n-hexylamine at room temperature. Phase purity was confirmed by powder X-ray diffraction. The high resolution transmission electron microscopy revealed the rectangle shape of Mn3O4 nanoplates with the average edge length of 22 nm and width of 19 nm. The prepared Mn3O4 nanoplates exhibited a coercive field of 5034 Oe at 10 K. The possible formation mechanism was also discussed.  相似文献   

15.
We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.  相似文献   

16.
采用大气压介质阻挡放电辅助氢气热还原方法和氢气热还原方法制备Pt/C催化剂,考察了制备方法及Pt负载量对Pt/C催化性能的影响。采用X-射线衍射(XRD)、循环伏安法、CO催化氧化反应研究Pt/C催化剂的晶相结构、电催化性能和CO催化氧化活性。结果表明:大气压介质阻挡放电辅助氢气热还原所制备的样品具有更高的电化学活性和CO催化氧化活性。当Pt负载量在2%到10%之间变化时,Pt/C-PC催化活性随负载量增加而增加。XRD测试结果显示当Pt负载量为2%,5%和10%时,Pt粒径分别为:10.6 nm,9.1 nm和6.4 nm,说明采用等离子体辅助氢气热还原方法制备的Pt/C-PC催化剂,Pt负载量越大,Pt粒径越小,CO催化氧化活性更高。  相似文献   

17.
Ceria doped MCM-41 materials were synthesized by surfactant-assisted hydrothermal and wet impregnation methods. All the obtained Ce-MCM-41 materials were characterized by N2 physical adsorption, X-ray diffraction (XRD), diffuse reflectance UV–visible spectroscopy (DRUV–vis), infrared spectroscopy (IR), solid-state cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy (CP/MAS-NMR), and transmission electron microscopy (TEM). The catalytic properties were evaluated in CO oxidation under atmospheric pressure and various temperatures. The results showed that in the materials synthesized by hydrothermal method, most of Ce ions were well incorporated in the tetrahedral coordinated sites into the framework of the MCM-41 as Si/Ce molar ratio is 30 and 50. High cerium content may lead to mesostructure partial collapsing and ceria particles segregation. For CO oxidation, the catalytic activity of Ce-MCM-41 synthesized by hydrothermal method was significantly greater than that of the materials prepared by impregnation route. Over the Ce-MCM-41 materials prepared via hydrothermal technique, 100% CO conversion was achieved at 504, 514 and 528 K, respectively, as the Si/Ce molar ratio decreased from 50 to 30 and 10. For the first time, we found an interesting correlation of Q3 species relative area in the 29Si CP/MAS-NMR spectra of the Ce-MCM-41materials with the reaction rates of CO oxidation, which indicates that both surface hydroxyls and tetrahedral-coordinated Ce4+ ions in the MCM-41 take important roles in the CO oxidation.  相似文献   

18.
Highly dispersed tungsten oxide on MCM-41 was synthesized using a novel atomic layer deposition (ALD) method. BET, XRD, XPS, NH3-TPD, and pyridine-IR were used to study the physicochemical properties of the supported tungsten oxides. In this study, the maximum loading of tungsten oxide on MCM-41 that could be prepared using the modified ALD method was 27.0 wt%. It was confirmed that the textural properties of the mesoporous silica were maintained after tungsten oxide loading. The NH3-TPD and Py-IR results indicated that weak acid sites, mainly Lewis acid sites, were produced over the WO3/MCM-41 samples. Moreover, 2-butanol dehydration was performed to demonstrate the potential advantages of the WO3/MCM-41 catalysts. The WO3/MCM-41 catalyst with 27.0 wt% tungsten oxide loading showed the highest activity in the dehydration of 2-butanol, which was attributed to the highest overall number of acid sites among the WO3/MCM-41 catalysts. The highly dispersed tungsten oxide on MCM-41 prepared via ALD can be an effective catalyst for producing butenes through 2-butanol dehydration.  相似文献   

19.
In this work, stem of common reed ash (SCRA) is introduced as a new source of silica in the preparation of mesoporous materials. Mesoporous silicate MCM-41 nanoparticles were synthesized hydrothermally using sodium silicate prepared from SCRA as a silica source. The characterization of MCM-41was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N\(_{2}\) adsorption/desorption (BET) and transmission electron microscopy (TEM). SEM shows that MCM-41 nanoparticles are sphere-like with size in the range of 30–50 nm with some degree of agglomeration. TEM image of the synthesized sample shows the open framework structure of MCM-41. A type IV isotherm can be observed from adsorption/desorption curves, which is the characteristic of mesoporous materials. The prepared MCM-41 nanoparticles were used as substrate to facilitate the oxidation of methanol through the modification with an electroactive species. The modification was achieved by impregnation of MCM-41 pores with \(\hbox {Ni}^{2+}\) ions (Ni-doped MCM-41). A modified carbon paste electrode (CPE) was prepared by mixing Ni-doped MCM-41 with carbon paste (NiMCM-41CPE). Cyclic voltammetry of NiMCM-41CPE shows an increment in current density of methanol oxidation in comparison with CPE in alkaline solution. Moreover, a decrease in the overpotential of methanol oxidation occurred on the surface of modified electrode. The effects of some parameters such as scan rate and methanol concentration are also investigated on the behaviour of NiMCM-41CPE. Also, the heterogeneous electron transfer rate for the catalytic reaction (k) of methanol is calculated.  相似文献   

20.
Bimetallic Pt-Au catalysts supported on ZnO/Al2O3 were prepared by incipient wetness impregnation (IW-IMP) method with different pretreatment conditions such as flow velocity, calcination temperature, and heating rate under H2 during the calcination procedure, and characterized by X-ray diffraction (XRD), CO chemisorption, and scanning transmission electron microscopy (STEM) equipped energy dispersive spectroscopy (EDS). Furthermore, catalytic activity for complete oxidation of toluene was measured using a flow reactor under atmospheric pressure. Finally, relationship between the particle sizes with pretreatment conditions and catalytic activity for toluene on the bimetallic Pt-Au catalysts was discussed. In these results, nanosized bimetallic Pt-Au particles on ZnO/Al2O3 could be prepared by IW-IMP method. Relationship between the Pt and Au particle size and activity for toluene oxidation was clearly observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号