首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical coatings and their influence on the reliability of flexible glass Flexible glass with thicknesses below 100 μm has excellent optical properties. However, due to its brittleness, processing steps like cleaning, vacuum coating and handling are challenging. A high fracture and fatigue strength is crucial for reliable processing, especially at the glass edge. Moreover, fatigue behavior is of great importance regarding early-life failure, but testing has been performed comparatively rarely. Therefore, a new stepwise fatigue test method was developed and the fatigue behavior of flexible glass with functional indium tin oxide and dielectric antireflection coatings was investigated. The fatigue strength of coated flexible glass increased significantly in almost all cases. With the new method, also other approaches to increase the strength of flexible glasses, e.g. by flash lamp annealing are currently investigated.  相似文献   

2.
An Overview of Hydrogen Interaction with Amorphous Alloys   总被引:2,自引:0,他引:2  
Theories, experimental results and applications associated with hydrogen behavior in amorphous metals and alloys are reviewed. An emphasis is made on the potential use of these advanced materials for hydrogen storage technology. Therefore, several properties that are especially relevant for such applications are assessed. These include structural models for hydrogen occupancy, sorption characteristics, solubility, diffusion behavior and thermal stabilities. Hydrogen effects on the mechanical properties and fracture modes of glassy metals are also presented, and possible mechanisms of hydrogen embrittlement are discussed. Similarities and differences between hydrogen behavior in amorphous and crystalline metals and alloys are discussed in detail.  相似文献   

3.
Fibers and fibrous materials are not isotropic and, therefore, posseses diverse mechanical properties in different directions, there is no specific strength, value to represent their mechanical properties. It is important to define the fibers and fibrous materials with its reliability based mechanical properties for the design of parts. In present work the simulation program is developed using Two Parameter Weibull Distribution and method of Maximum Likelihood Estimation (TPWDUMLE) to find the Weibull parameters for strength characterization in fiber and fibrous materials using experimental-reliability based novel approach. The fracture strength of glass fiber, banana fiber and glass–polyester composite are experimentally (ASTM: D3039/3039M-08) determined and statistically analyzed by the TPWDUMLE. The reliability in terms of its fracture strength presented as reliability plot and it is observed that Weibull distribution allows to describe the fracture strength of a fiber/composite material in terms of a reliability function. It also provides composite material manufacturers with a tool that will enable them to present the necessary mechanical properties with certain confidence to end users.  相似文献   

4.
A series of Gd–Ni–Al ternary glassy alloys with the maximum diameter of 4 mm were obtained by common copper mold casting. The maximum values of the reduce glass transformation temperature (T g/T m) and the distance of supercooling region ΔT x of these alloys in this study were 0.648 and 50 K, respectively. The compressive fracture strength (σ f) and Young’s modulus (E) of Gd–Ni–Al glassy alloys were 1,240–1,330 MPa and 63–67 GPa, respectively. The magnetic properties of these BMGs were investigated. The Gd–Ni–Al bulk glassy alloys with great glass forming ability and good mechanical properties are promising for the future development as a new type of function materials.  相似文献   

5.
Al2O3-and ZrO2-modified dental glass ceramics   总被引:3,自引:0,他引:3  
Castable machinable glass-ceramics have been widely considered as aesthetic materials for dental restoration. In order to extend their applications to bridge-work fabrication, it is necessary to increase their fracture strength and fracture toughness. The effects of ziconia and alumina additions on the properties of glass-ceramics, especially on the mechanical properties were studied. It was found that appropriate addition of alumina increases the bending strength due to aluminium strengthening the glass-ceramic by means of incorporation into the glass network. However, additions of ziconia fail to show promising results on the mechanical property. The evolution of recrystallization and the associated microstructure were also studied and are discussed.  相似文献   

6.
低温烧结高性能2Y-TZP材料   总被引:3,自引:0,他引:3  
通过在2Y-TZP中加入一定量的硅酸盐玻璃相添加剂,在较低的烧结温度下,制备出细晶、具有良好综合性能的2Y-TZP材料.研究了添加剂加入后,2Y-TZP材料烧结特性、显微结构及力学性能.发现加入少量的添加剂后,不但可以明显降低材料的烧结温度,而且由于细晶及相变增韧的共同作用,材料仍具有较高的抗折强度和断裂韧性.讨论了稳定剂含量对低温烧结Y-TZP力学性能的影响,发现较低稳定剂含量的2Y-TZP材料,由于临界相变尺寸小,在断裂过程中,有更多的四方相氧化锆转变成单斜相,相变增韧的效果更好,因而具有更高的断裂韧性.  相似文献   

7.
Designing tissue engineering scaffolds with the required mechanical properties and favourable microstructure to promote cell attachment, growth and new tissue formation is one of the key challenges facing the tissue engineering field. An important class of scaffolds for bone tissue engineering is based on bioceramics and bioactive glasses, including: hydroxyapatite, bioactive glass (e.g. Bioglass®), alumina, TiO2 and calcium phosphates. The primary disadvantage of these materials is their low resistance to fracture under loads and their high brittleness. These drawbacks are exacerbated by the fact that optimal scaffolds must be highly porous (>90% porosity). Several approaches are being explored to enhance the structural integrity, fracture strength and toughness of bioceramic scaffolds. This paper reviews recent proposed approaches based on developing bioactive composites by introducing polymer coatings or by forming interpenetrating polymer-bioceramic microstructures which mimic the composite structure of bone. Several systems are analysed and scaffold fabrication processes, microstructure development and mechanical properties are discussed. The analysis of the literature suggests that the scaffolds reviewed here might represent the optimal solution and be the scaffolds of choice for bone regeneration strategies.  相似文献   

8.
连续纤维增强氮化物陶瓷基复合材料是耐高温透波材料的主要发展方向,纤维是目前制约耐高温透波复合材料发展的关键,而SiBN陶瓷纤维是一种兼具耐高温、透波、承载的新型陶瓷纤维。以聚硅氮烷为陶瓷先驱体,以SiBN连续陶瓷纤维为增强体,采用先驱体浸渍-裂解法制备了SiBN陶瓷纤维增强SiBN陶瓷基复合材料,研究了复合材料的热膨胀特性、力学性能、断裂模式以及微观结构。结果表明:SiBN陶瓷纤维增强SiBN陶瓷基复合材料呈现明显的脆性断裂特征,复合材料的弯曲强度和拉伸强度分别为88.52 MPa和6.6 MPa,纤维的力学性能仍有待于提高。  相似文献   

9.
聚苯硫醚及其玻璃纤维增强复合材料力学性能研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文利用差示扫描量热仪(DSC)研究了国产低分子量聚苯硫醚及其固相热处理产物的热行为,并用悬浮-熔融法制备了玻璃纤维增强聚苯硫醚复合材料的预浸带,测定了其单向板的力学性能,观察了其断口形貌。结果表明:低分子量聚苯硫醚经过固相热处理后,其Tg、Tc上升,Tm下降;热处理后的聚苯硫醚玻纤复合材料在室温时的力学性能有很大程度的提高,其高温性能受玻璃化转变的影响显著;通过SEM观察断口发现其破坏主要属于界面脱粘。  相似文献   

10.
Organic semiconductors may be processed from fluids using graphical arts printing and patterning techniques to create complex circuitry. Because organic semiconductors are weak van der Waals solids, the creation of glassy phases during processing is quite common. Because structural disorder leads to electronic disorder, it is necessary to understand these phases to optimize and control the electronic properties of these materials. Here we review the significance of glassy phases in organic semiconductors. We examine challenges in the measurement of the glass transition temperature and the accurate classification of phases in these relatively rigid materials. Device implications of glassy phases are discussed. Processing schemes that are grounded in the principles of glass physics and sound glass transition temperature measurement will more quickly achieve desired structure and electronic characteristics, accelerating the exciting progress of organic semiconductor technology development.  相似文献   

11.
The effects of post-curing and temperature on the glass transition, bulk density and stress-strain behaviour in the glassy and rubbery state of 2-ethyl-4-methyl imidazole-cured epoxy network have been evaluated by differential scanning calorimetry (DSC), water displacement and tensile testing. The glass transition temperature,T g, was found to increase with increasing post-cure temperature and the size of the base line shift in the glass transition region on the DSC thermogram can serve as an indicator of the extent of cure. At room temperature, the decrease in bulk density with increasing extent of cure may be attributed to the additional cross-linking, adding molecular constraints to the thermal constraints. Thus, a higher free volume atT g can be expected to remain in the glassy state as the sample is slowly cooled through the glass transition temperature. In the investigation on the temperature dependence of the tensile mechanical properties, a fracture envelope was obtained. The tensile strength, Young's modulus and ultimate elongation in the glassy and rubbery state are discussed in detail.  相似文献   

12.
The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P2O5–CaO–MgO–Na2O–TiO2, which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.  相似文献   

13.
Bulk metallic glasses--formed by supercooling the liquid state of certain metallic alloys--have potentially superior mechanical properties to crystalline materials. Here, we report a Co(43)Fe(20)Ta(5.5)B(31.5) glassy alloy exhibiting ultrahigh fracture strength of 5,185 MPa, high Young's modulus of 268 GPa, high specific strength of 6.0 x 10(5) Nm kg(-1) and high specific Young's modulus of 31 x 10(6) Nm kg(-1). The strength, specific strength and specific Young's modulus are higher than previous values reported for any bulk crystalline or glassy alloys. Excellent formability is manifested by large tensile elongation of 1,400% and large reduction ratio in thickness above 90% in the supercooled liquid region. The ultrahigh-strength alloy also exhibited soft magnetic properties with extremely high permeability of 550,000. This alloy is promising as a new ultrahigh-strength material with good deformability and soft magnetic properties.  相似文献   

14.
The mechanical properties of blends of the crystallizable polymer poly(vinylidene fluoride) and the amorphous material poly(methyl methacrylate) have been investigated as a function of composition both for glassy amorphous materials and for partially crystalline materials. The data obtained were interpreted in terms of the molecular and super-molecular structure of the blends and in terms of their dynamic properties.The main conclusions were that the mechanical properties are not strongly dependent on details of the distribution of the two components in the material nor on the crystal modifications present. The mechanical properties were found to depend primarily on the location of the glass transition temperature relative to the elongation temperature and on the presence or absence of crystalline regions. The degree of crystallinity was found to play an important role in determining the properties only at lower values of this quantity. The advantage of these blends is that the important parameters, namely, the degree of crystallinity and the location of the glass transition temperature, can be adjusted at will by varying the composition appropriately. This allows well-defined variations of the mechanical properties to be achieved.  相似文献   

15.
Glassy polymers constitute a large class of engineering solids. In order to successfully analyze the warm (near the glass transition temperature) mechanical processes by which many glassy polymeric products are manufactured, as well as to ascertain the response of the resulting part to service life loading conditions, a constitutive law that properly accounts for the large, inelastic deformation behavior of these materials is required. Such behavior is known to exhibit strain rate, temperature, and pressure dependent yield, as well as true strain softening and hardening after yield. This paper develops a three-dimensional constitutive model based on the macromolecular structure of these materials and the micromechanism of plastic flow which encompasses these above dependencies. The experiments necessary to determine the material properties used in the model are also identified. The model predictions for the true stress-strain behavior of PMMA are then compared with experimental data reported in the literature.  相似文献   

16.
EP/SiO2 nanocomposites, which contained PEO flexible chain, have been prepared via epoxy resin and PEO-grafted silica particles. The PEO-silica particles were obtained by endcapping PEO-1000 with toluene 2,4-diisocyanate (TDI), followed by a reaction with silica sols. The chemical structure of the products was confirmed by IR measurements, and the mechanical properties of composites such as impact strength, flexural strength, dynamic mechanical thermal properties were investigated. The results showed that the addition of the PEO-grafted silica particles to the epoxy/DDS curing system, the impact strength is 2 times higher than that of the neat epoxy. While the storage modulus and the glass transition temperature are a little changed. The morphological structure of impact fracture surface and the surface of the hybrid materials were observed by scanning electron microscope (SEM) and atomic force microscopy (AFM), respectively.  相似文献   

17.
Eight structural elements in biological materials are identified as the most common amongst a variety of animal taxa. These are proposed as a new paradigm in the field of biological materials science as they can serve as a toolbox for rationalizing the complex mechanical behavior of structural biological materials and for systematizing the development of bioinspired designs for structural applications. They are employed to improve the mechanical properties, namely strength, wear resistance, stiffness, flexibility, fracture toughness, and energy absorption of different biological materials for a variety of functions (e.g., body support, joint movement, impact protection, weight reduction). The structural elements identified are: fibrous, helical, gradient, layered, tubular, cellular, suture, and overlapping. For each of the structural design elements, critical design parameters are presented along with constitutive equations with a focus on mechanical properties. Additionally, example organisms from varying biological classes are presented for each case to display the wide variety of environments where each of these elements is present. Examples of current bioinspired materials are also introduced for each element.  相似文献   

18.
In this paper, we designed a novel processing method and successfully developed in situ precipitated B2-NiTi shape-memory-alloy reinforced Mg-based bulk metallic glass matrix composites (BMGMCs). The composites exhibited improved fracture strength in both compressive and flexural modes and large plastic deformation in compressive mode compared with those of its monolithic glassy counterpart. The stress-induced martensitic transformation of B2-NiTi in this system caused the composite to exhibit work-hardening behavior, especially during compression. The microstructure of the composite was optimized by decreasing the size and increasing the volume fraction of the B2-NiTi phase, to obtain better mechanical properties. This novel in situ method is applicable to fabricating various BMGMCs, making it a breakthrough for designing ductile work-hardenable BMGMCs.  相似文献   

19.
We report the development of a novel light-weight Al (520) alloy-based composite reinforced with particles of a Cu-based (Cu54Zr36Ti10) metallic glass by mechanical milling followed by induction heated sintering. The consolidation of the composite is performed at a temperature in the super-cooled liquid region of the metallic glass just above its glass-transition temperature (Tg). Metallic glasses are a promising alternative reinforcement material for metal-matrix composites capable of producing significant strengthening along with a «friendly» sintering behavior. The mechanical milling procedures were properly established to allow reduction of the size of the metallic glass particles and their uniform distribution in the matrix. Microstructural observation of the composite did not reveal any porosity. The interface between the glassy particles and the matrix remained free of such defects. The fully dense consolidated composite showed a drastic gain in specific yield strength under compression relative to the matrix alloy and appreciable plasticity at fracture.  相似文献   

20.
The development of new alloys with improved mechanical properties has been seriously hampered in the past by the inability of a metallurgist to relate quantitatively the variables of microstructure and fracture toughness. The emergence of a unified theory of fracture toughness in the past decade has done much to alleviate this difficulty. As a consequence of a recent interdisciplinary research effort involving both the disciplines of physical metallurgy and experimental fracture mechanics, we have been able to develop alloys with engineering properties superior to those of commercially available materials. This research has required the creation of new and unusual microstructures, utilizing a variety of thermal and thermomechanical processes. The quantitative relationships of mechanical properties (strength, ductility, work hardening, and fracture toughness) with composition and microstructure are discussed in detail for the newly developed TRIP steels. In the report of another development, it is shown how the fracture toughness of low alloy quenched and tempered steels with yield strengths over 200,000 psi can be improved by as much as 70 per cent by microstructural control. Lastly, the initial results of research on alloys intended for cryogenic service are described. The composition, heat treatment, microstructure and properties of an alloy having more than three times the toughness of the presently used alloys are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号