首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoluminescence (PL), PL excitation (PLE), and time-resolved PL were used to study effects of InGaAs layers on the optical properties of InAs/GaAs quantum dots (QDs). A rich fine structure in the excited states of confined excitons (up to n = 4 quantum states) was observed, providing useful information to study the quantum states in the InAs/GaAs QDs. A significant redshift of the PL peak energy for the QDs covered by InGaAs layers was observed, attributing to the decrease of the QD strain and the lowing of the quantum confinement.  相似文献   

2.
Self-organised InAs/GaAs quantum dots (QDs) were formed by molecular beam epitaxy using the Stranski–Krastanov growth mode. Deep-level transient spectroscopy as well as secondary ion mass spectrometry have been used to characterise structures containing the QDs. DLTS depth profiling procedures indicate that deep level-related defects are localised in GaAs in the vicinity of the QD plane. For the first time, we report the presence of a deep level-related trap with an extremely high thermal activation energy of Ec 1.03 eV. An electron trap at Ec 0.78 eV can be identified as the well-known level related to the EL2 family. We conclude that a third trap revealed at Ec −0.57 eV is the familiar PL killer related to the intrinsic point defect-oxygen complex. The latter is confirmed by results of the SIMS study, which indicates that the amount of oxygen accumulated at the InAs/GaAs heterointerface is increased. This paper demonstrates that the EL2 and oxygen-related deep-level centers occur by the presence of InAs/GaAs QDs. We present the hypothesis that deep states could be a factor limiting the efficiency of QD-based devices.  相似文献   

3.
Surface compositional maps of self-organized InAs/GaAs quantum dots were obtained with laterally resolved photoemission spectroscopy. We found a surface In concentration of about 0.85 at the center of the islands which decreases to 0.75 on the wetting layer. Comparison with concentration values found in the core of similar dots suggests a strong In segregation on the topmost surface layers of the dots and on the surrounding wetting layer. Furthermore, the morphological properties of the dots such as size and density have been measured with plan-view transmission electron microscopy and low energy electron microscopy.  相似文献   

4.
Self-assembled GaAs anti quantum dots (AQDs) were grown in an InAs matrix via migration enhanced molecular beam epitaxy. The transmission electron microscopy image showed that the 2D to 3D transition thickness is below 1.5 monolayers (MLs) of GaAs coverage. The average diameter and height of the GaAs AQDs for 1.5 ML GaAs coverage taken from the atomic force microscopy image were approximately 29.0 nm and 1.4 nm, respectively. The density was approximately 6.0 x 10(10) cm(-2). The size of the AQDs was enlarged in the InAs matrix compared with that on the surface. These results indicate that the GaAs AQDs in the InAs matrix under tensile strain can be effectively formed with the assistance of the migration enhanced epitaxy method.  相似文献   

5.
Room-temperature photoluminescence (PL) at 1.55 μm from heterostructures with InAs/InGaAsN quantum dots (QDs) grown by MBE on GaAs substrates is demonstrated for the first time. The effect of nitrogen incorporated into InAs/InGaAsN QDs on the PL wavelength and intensity was studied. The integral intensity of PL from the new structure with InAs/(In)GaAsN QDs is comparable to that from a structure with InGaAsN quantum wells emitting at 1.3 μm.  相似文献   

6.
InAs/GaAs quantum dot (QD) structures were grown by molecular beam epitaxy (MBE) with InAs coverages θ continuously graded from 1.5 ML to 2.9 ML. A critical coverage of 2.23 ML is found, above which the islands undergo ripening, which causes a fraction of quantum dots to increase in size and to eventually relax through the formation of pure, edge-type misfit dislocations which propagate towards the surface in the form of V-shaped defects. Concomitant with ripening, extended-defect related traps with activation energies of 0.52 and 0.84 eV were observed, and regarded as the cause of the significant worsening of the optical and electrical properties in high coverage structures. Their relationship with the observed dislocations is discussed.  相似文献   

7.
Technical Physics Letters - Results of studying the formation of InAs quantum dots (QDs) on GaAs(100) substrates by droplet epitaxy using trimethylindium and arsine (AsH3) as precursors are...  相似文献   

8.
9.
Multilayer structures of InGaAs/GaAs quantum dots fabricated by submonolayer migrationstimulated epitaxy have been studied experimentally by scanning tunneling microscopy and results are presented. These results clearly show that in multilayer structures, ordering of nanoobjects into rows occurs in InAs and InGaAs heteroepitaxial layers. Pis#x2019;ma Zh. Tekh. Fiz. 23, 80–84 (November 26, 1997)  相似文献   

10.
The optical properties of multilayer heterostructures with quantum dots were studied for InAs/GaAs systems obtained by the combined method of molecular-beam epitaxy and submonolayer migration-stimulated epitaxy. Using these structures, it is possible to obtain the room-temperature photoluminescence with maximum emission in the wavelength range from 1.3 to 1.4 μm.  相似文献   

11.
Photoluminescence, magnetophotoluminescence, and atomic force microscopy were used for the characterization of MOVPE prepared InAs/GaAs quantum dots. Significant differences in the behaviour of the first excited photoluminescence transition in magnetic field are explained by the different lateral shape of quantum dots. While the first excited luminescence peak of circular quantum dots splits with increasing magnetic field into two peaks, no splitting occurs for quantum dots with elliptic shape, only small red shift is observed. Theoretical calculations of energy levels in InAs/GaAs quantum dots with circular and elliptical shape with different elongations are presented and compared with experimental results.  相似文献   

12.
We investigated vertically aligned InAs/GaAs QD structures, grown by atomic layer molecular beam epitaxy, with a number N of layers and with spacer thicknesses d. QD alignment and structure quality were checked by transmission electron microscopy. The dependencies of carrier capture, decay dynamics and existence of quenching channels on the design parameters N and d were studied by time resolved photoluminescence (PL), PL excitation (PLE) and PL temperature-dependent measurements. Our results show that the carrier capture and the radiative efficiency of the QDs are negatively affected by increasing the number of QD layers and by reducing the spacer thicknesses; this effect is likely to be related to the increase of defect concentrations in GaAs spacers, due to relaxation of an increasingly large strain.  相似文献   

13.
Analytical expressions describing the energy spectrum of electrons and holes are obtained for a quantum dot (QD) occurring in a self-consistent strain field created by an array of coherently stressed QDs. A method of taking into account the lattice mismatch at the QD-matrix interface is proposed that allows for the dependence of the mismatch parameter on the QD size and the matrix layer thickness. It is shown that the internal elastic strain arising at the QD-matrix interface influences the energy spectrum of electrons more significantly than the spectrum of holes.  相似文献   

14.
Coupled InAs/GaAs quantum dots have generated an interest for their longer emission wavelength and narrower line-width. However, a consensus has not been reached on the parameters of growth required to achieve a desired effect from coupling due to contradictory reports of shorter emission wavelengths. In this paper, we seek to compare the luminescence properties of bilayer quantum dots (BQDs) with those of multilayer quantum dots (MQDs), grown at a very low deposition rate, keeping all parameters constant. The BQD and MQD samples were grown by solid source MBE at a slow growth rate of 0.03 ML/s. A blueshift in the PL spectra for 11 layer coupled InAs/GaAs MQD heterostructure is observed compared to the BQDs for temperatures less than 180 K. This undesired blueshift is attributed to strain in the structure which overshadowed the usual redshift in emission wavelength in such structures due to electronic coupling. The variation in PL line-width with temperature in the MQD structure is found to be much lower than in the BQD. However the PL intensity of the MQDs fall at a faster rate with temperature compared to the BQD sample, due to strain generated non-radiative centers in the islands which favors in thermalization of carriers.  相似文献   

15.
The effects of a piezoelectric field on the spectroscopic properties of strained InAs/GaAs self-assembled quantum dot (QD) heterostructures grown on (N11) substrates with A or B termination are presented. An increasing blue shift of photoluminescence (PL) band was observed with increasing excitation density. The PL blue shift of (N11) quantum dots measured at the highest excitation grows with 1/N and shows an asymmetric dependence on whether the substrate has A or B termination. We attributed the blue shift of the photoluminescence band to the screening of the piezoelectric field by the photo-generated carriers, leading to a reduction of the piezoelectric induced quantum confined Stark effect.  相似文献   

16.
Electron emission in a system of vertically coupled quantum dots (VCQDs) in InAs/GaAs p-n-heterostructures obtained by molecular beam epitaxy has been studied by means of deep-level transient spectroscopy (DLTS) as a function of the number of quantum dot (QD) rows and the reverse bias voltage. For a GaAs spacer thickness of d GaAs = 40 Å, the system occurs in a molecular state, irrespective of the number of QD rows. An increase in this number leads to a decrease in the Stark shift, which is probably related to a decrease in the lattice strain potential in the vicinity of VCQDs.  相似文献   

17.
The principal mechanisms of the nonradiative (Auger) recombination of nonequilibrium charge carriers in semiconductor heterostructures with quantum dots (QDs) are considered. It is shown that the Auger recombination process in QDs can proceed, in addition to a threshold mechanism, by means of two other substantially different mechanisms—thresholdless and quasi-threshold—and either of these can predominate, depending on the QD size. For a QD radius of ~30 Å, the probability of Auger recombination is comparable with that of radiative recombination.  相似文献   

18.
In this work, low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) experiments have been carried out to investigate the optical and electronic properties of InAs/GaAs quantum dots (QDs) subjected to room-temperature proton implantation at various doses (5 × 10(10)-10(14)?ions?cm(-2)) and subsequent thermal annealing. The energy shift of the main QD emission band is found to increase with increasing implantation dose. Our measurements show clear evidence of an inhomogeneous In/Ga intermixing at low proton implantation doses (≤5 × 10(11)?ions?cm(-2)), giving rise to the coexistence of intermixed and non-intermixed QDs. For higher implantation doses, a decrease of both the PL linewidth and the intersublevel spacing energy have been found to occur, suggesting that the dot-size, dot-composition and dot-strain distributions evolve towards more uniform ones.  相似文献   

19.
InAs/GaAs quantum dots have been subjected to a lateral external electric field in low-temperature microphotoluminescence measurements. It is demonstrated that the dot PL signal could be increased several times depending on the magnitude of the external field and the strength of the internal (built-in) electric field, which could be altered by an additional infrared illumination of the sample. The observed effects are explained by a model that accounts for the essentially faster lateral transport of the photoexcited carriers achieved in an electric field.  相似文献   

20.
Microdisc resonators based on InAs/GaAs quantum dots separated from a GaAs substrate by selective etching and fixed to a silicon substrate by epoxy glue are studied using luminescence spectroscopy. A disc resonator 6 μm in diameter exhibits quasi-single-mode laser generation at a temperature of 78 K with a threshold power of 320 μW and λ/Δλ ~ 27000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号