首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La0.5Sr0.5TiO3 (LSTO) nanoparticles were synthesized by thermal decomposition method using Cl3La, CI2Sr x 6H2O and C16H28O6Ti as starting materials. The obtained precursor in a powder form was calcined at 700, 900, 1100 and 1300 degrees C for 3, 6 and 9 h in air. The structures of all samples were analyzed by XRD and some of them were taken for SEM, TEM and VSM measurements. The results from SEM showed the parallelpipe like shape of the particles with sizes distributed between 80 and 180 nm and the sizes of these particles were increased with the increasing of calcination temperature and time. The XRD's results showed the perovskite structure with the lattice type of orthorhombic at the calcination temperature of 900, 1100 and 1300 degrees C for 3, 6 and 9 h. The TiO and others unknown phase were found at low calcination temperature and they were disappeared as the calcination temperature and time were increased. The results of TEM support the orthorhombic structure of LSTO nanoparticles with crystallite size less than 200 nm as revealed by SEM and XRD. The magnetic property of all samples was measured by VSM and revealed that those prepared at 700, 900, and 1100 degrees C exhibit diamagnetic behavior, whereas one at 1300 shows ferromagnetism at room temperature. In this work, it is found that the nano-LSTO of high crystalline phase and purity can be prepared by thermal decomposition method at calcination temperature of 900 to 1300 degrees C in air for 6-9 h.  相似文献   

2.
Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites   总被引:2,自引:0,他引:2  
Decolorization of an anthraquinone dye, Reactive Brilliant Blue KN-R by hydrogen peroxide was examined using Fe-containing Y and ZSM-5 zeolites as heterogeneous catalysts. Catalysts were prepared by ion-exchange and coprecipitation methods, and calcined at different temperatures. The surface morphologies, crystalline phases, and chemical-state of the catalysts were characterized by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Influences of reaction conditions, such as dye concentration, catalyst dosage and solution pH, were evaluated and the relations between catalytic capacity and surface microstructures were discussed. The results showed that Fe-containing Y and ZSM-5 zeolites generally exhibited similar or better catalytic efficiency compared with homogeneous Fenton reagent, with Fe-containing ZSM-5 being more efficient. Synthesis method and calcination temperature affected catalytic efficiency and the stability of catalysts. Fe-containing ZSM-5, which was prepared by coprecipitation and calcined at 450 degrees C, displayed the greatest decolorization capacity. Under the conditions of initial pH 2.5, 30.0 mmol/L H(2)O(2) and 4.0 g/L catalyst, 250 mg/L KN-R could be decolorized over 90% within 20 min.  相似文献   

3.
Aqueous phase reforming of glycerol over Ni-based catalysts for hydrogen production was carried out at 225 degrees C, 23 bar and LHSV = 4 h(-1). The Ni-based catalyst was prepared by an incipient wetness impregnation method. The catalysts before and after the reaction were characterized by N2 physisorption, CO chemisorption, XRD, TPR, SEM and TEM techniques. It was found that Ni(20 wt%)-Co(3 wt%)/gamma-Al2O3 catalyst showed higher glycerol conversion and hydrogen selectivity than Ni(20 wt%)/gamma-Al2O3 catalyst. There are no major changes in Ni particles after the reaction over Ni-Co/gamma-Al2O3 catalyst. The results suggest that the Ni-Co/gamma-Al2O3 catalyst can be applied to the hydrogen production system using APR of glycerol.  相似文献   

4.
Trichloroethylene (TCE) is a volatile and nerve-toxic liquid, which is widely used in many industries as an organic solvent. Without proper treatment, it will be volatilized into the atmosphere easily and hazardous to the human health and the environment. This study tries to prepare granular ZnO/Al(2)O(3) catalyst by a modified oil-drop sol-gel process incorporated the incipient wetness impregnation method and estimates its performance on the catalytic decomposition of TCE. The effects of different preparation and operation conditions are also investigated. Experimental results show that the granular ZnO/Al(2)O(3) catalyst has good catalytic performance on TCE decomposition and the conversion of TCE is 98%. ZnO/Al(2)O(3)(N) catalyst has better performance than ZnO/Al(2)O(3)(O) at high temperature. Five percent of active metal concentration and 550 degrees C calcination temperature are the better and economic preparation conditions, and the optimum operation temperature and space velocity are 450 degrees C and 18,000 h(-1), respectively. The conversions of TCE are similar and all higher than 90% as the oxygen concentration in feed gas is higher than 5%. By Fourier transform infrared spectrography (FT-IR) analyses, the major reaction products in the catalytic decomposition of TCE are HCl and CO(2). The Brunauer-Emmett-Teller (BET) surface areas of catalysts are significantly decreased as the calcination temperature is higher than 550 degrees C due to the sintering of catalyst materials, as well as the reaction temperature is higher than 150 degrees C due to the accumulations of reaction residues on the surfaces of catalysts. These results are also demonstrated by the results of scanning electron micrography (SEM) and energy disperse spectrography (EDS).  相似文献   

5.
Nb and Sc doped TiO2 nanoparticles were synthesized via sol-gel technique. Dopant concentration of each element was varied from 0.5 to 1.5 atomic%. The effect of metal ion doping and calcination temperatures on anatase to rutile phase transformation has been investigated. Samples were analyzed by various analytical methods such as X-ray diffraction (XRD), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS). XRD analyses showed that Nb and Sc doped samples calcined at 300 degrees C and 350 degrees C, respectively, were crystalline and had an anatase structure. Results showed that anatase was stable up to 700 degrees C annealing temperature for samples doped with 0.5 atomic% Nb. There was a sharp transition from anatase to rutile phase above 700 degrees C and complete rutile structure was obtained at 750 degrees C. However, the transformation from anatase to rutile was not so sharp in samples doped with 1.0 atomic% and 1.5 atomic% Nb. Results indicated that higher concentration of Nb helps to stabilize the anatase phase. For samples doped with 0.5 atomic% Sc, anatase phase is stable up to 650 degrees C. Transformation from anatase to rutile starts at temperature above 650 degrees C and 100% rutile phase was obtained at 800 degrees C while for samples doped with 1.0 atomic% and 1.5 atomic% Sc, the complete transformation from anatase to rutile takes place at an even higher temperature. Results indicate that increasing the calcination time from 0.5 to 2.0 hours at 500 degrees C does not affect the stability of anatase phase. However, TEM and XRD data showed that the increase in the annealing time leads to an increase in particles size. The rutile to anatase concentration ratio increased with temperature above the phase transformation temperature. The activation energy for the phase transformation from anatase to rutile for doped and undoped samples was also measured. There was a general rise in the activation energy with increasing dopant concentration.  相似文献   

6.
Mesoporous Co3O4 particles are prepared by using mesoporous silica KIT-6 (with double gyroid Ia-3d symmetry) as a hard-template and Co(No3)2 x 6H2O as an inorganic precursor. In the former section, we investigate the effect of the calcination temperatures at which the Co salts are converted into Co3O4 inside the mesopores on the textural parameters of the products. The results of N2 adsorption-desorption analysis indicates that the calcination temperatures do not obviously affect the textural parameters such as the surface areas and pore volumes. However, when the calcination temperature reaches 800 degrees C, the mesostructural ordering is dramatically decreased, resulting in the reduction of the surface areas and pore volumes. After 800 degrees C calcination, the formation of large Co3O4 grains is partially confirmed on the particle surface by SEM observation. The grain size is much larger than the mesopore size of the original KIT-6, meaning the crystal growth is continuously occurred by breaking the rigid silica frameworks. In the latter section, we discuss the effect of the calcination temperatures and textural parameters on the catalytic activity for CO oxidation by both steady state and kinetic measurements. All mesoporous Co3O4 particles show a high catalytic activity, for example, -72 degrees C for sample calcined at 450 degrees C. Only 10 degrees C difference in T50 (the temperature of 50% conversion of CO) is found between the samples with the highest and lowest catalytic activity. The values of activation energy (Ea) and pre-exponential factor (A) per unit area are almost the same between two samples calcined at 450 degrees C and 800 degrees C. It is demonstrated that calcination process can not alter the essential catalytic property of mesoporous Co3O4 particles.  相似文献   

7.
TiO(2) and sulfated TiO(2) (SO(4)(2-)/TiO(2)) catalysts with different textural properties were prepared under different calcination temperatures and the photo-reduction of Cr(VI) to Cr(III) catalyzed by these catalysts was investigated. For the photocatalytic reduction of Cr(VI), the photocatalytic activities of the TiO(2) samples were found to be strongly dependent of the calcination temperature and TiO(2) calcined at 400 degrees C showed a higher catalytic activity compared to other TiO(2) catalysts. In contrast, sulfation of TiO(2) stabilized the catalytic activities of SO(4)(2-)/TiO(2) catalysts. At low calcination temperature, SO(4)(2-)/TiO(2) catalysts exhibited catalytic activities almost comparable with that of TiO(2) and the catalytic activities of SO(4)(2-)/TiO(2) catalysts were markedly higher than TiO(2) under high calcination temperature. In addition, the removal of surface SO(4)(2-) of SO(4)(2-)/TiO(2) catalyst led to a marked decrease of the catalytic activity for Cr(VI) photo-reduction, suggesting that the presence of surface SO(4)(2-) provided an acid environment over the catalyst surface and favored the photo-reduction of Cr(VI).  相似文献   

8.
采用水解-沉积法, 在不同焙烧温度下制备了cat-500、cat-600、cat-700和cat-800系列NiO/γ-Al2O3催化剂。XRD和H2-TPR分析表明, 焙烧温度高于700 ℃, 活性组分与载体具有强烈的金属-载体相互作用(SMSI), 具体表现为活性组分前驱体以尖晶石NiAl2O4的形式存在。反应后催化剂的XRD、TG-DTG、TPH等表征结果表明, cat-700和cat-800试样的Ni晶粒尺寸分别为9.8和8.7 nm, 小于cat-500和cat-600试样(分别为15.7和13.6 nm), 分散性更好; 且催化剂表面积炭为丝状碳, 其不会导致催化剂失活, 但大量积累会引起床层压降升高, 影响催化剂的反应性能。cat-800试样110 h寿命试验表明, 高温焙烧制备的Ni基催化剂活性和稳定性均较高, CO2转化率达95%左右, 失活速率仅为0.0536%/h。  相似文献   

9.
In this study, nanocrystalline Nb2O5 thin film has been prepared via sol-gel process using niobium ethoxide as a precursor. Sol-gel films using various ratios of H2O/Nb have been prepared on fluorinated tin oxide (FTO) glass substrate, and used as electron-blocking layer of dye-sensitized solar cell (DSSC). The Nb2O5 film as deposited was amorphous, but became crystalline with hexagonal phase after heat treatment at 600 degrees C. With higher H2O/Nb molar ratio, denser and more uniform Nb2O5 film surface was obtained. DSSCs with the structure of FTO/Nb2O5/TiO2/Dye/EL/Pt/FTO have been prepared, and their solar-cell performance was evaluated. By introduction of Nb2O5 sol-gel film between FTO and TiO2 layer in DSSCs, energy conversion efficiency could be improved.  相似文献   

10.
WOx–ZrO2 support was calcined at various temperatures for obtaining controllable activity of copper catalysts for NOx reduction by ammonia. The temperature window of copper catalyst for over 80% NOx conversion shifts from 180–300 to 230–350 °C by elevating the calcination temperature of WOx–ZrO2 support from 500 to 600 °C, due to the increased Brønsted acidity and reduced structure and electronic interactions between copper oxides and tungsten oxides arising from the polymerization of WOx clusters on surface of support. Calcining WOx–ZrO2 support at 700 °C leads to the reduced redox property of copper oxides on the Cu–O–W interface and the formation of bulk-like CuO, results in a low activity of catalyst.  相似文献   

11.
Gas-phase photocatalytic oxidation (PCO) of nitric oxide (NO) with immobilized TiO2 films was studied in this paper. The immobilized TiO2 films were synthesized by hydrothermal method. The characterization for the physicochemical properties of catalysts prepared under different hydrothermal conditions were carried out by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller measurements (BET) and scanning electron micrograph (SEM). It was found that the PCO efficiency of the catalyst was mainly depended on the hydrothermal conditions. The optimal values of hydrothermal temperature and hydrothermal time were 200 degrees C and 24 h, respectively. Furthermore, it was also known that the photocatalytic efficiency would decrease remarkably when the calcination temperature was over than 450 degrees C. Under the optimal conditions (hydrothermal condition: 200 degrees C for 24 h; calcination temperature: 450 degrees C), the photocatalytic efficiency of catalyst could reach 60% higher than that of Degussa P25.  相似文献   

12.
The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 degrees C, but its catalytic activity diminished at the pretreatment temperature of 600 degrees C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 degrees C>200 degrees C>parent>600 degrees C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 degrees C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid>citric acid>acetic acid>or=nitric acid>parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the catalytic combustion of toluene.  相似文献   

13.
Xu H  Li H  Wu C  Chu J  Yan Y  Shu H  Gu Z 《Journal of hazardous materials》2008,153(1-2):877-884
A series of Cu-loaded BiVO(4) (Cu-BiVO(4)) catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and special surface area. The photocatalytic activities of Cu-BiVO(4) catalysts for the degradation of methylene blue (MB) were found to depend largely on the Cu content and the calcination temperature. The optimum Cu loading and calcination temperature were found to be 5 at.% and 300 degrees C, respectively. The results of XPS and SEM analysis indicated that Cu, CuO in this case, was dispersed on the surface of BiVO(4). The results of DRS analysis showed that the Cu-BiVO(4) series catalysts had significant optical absorption in the visible region between 550 and 800 nm and found that the absorption intensity increased with the enhancement of Cu content. An efficient N-demethylation of MB using Cu-BiVO(4) catalyst (5 at.% Cu content) calcined at 300 degrees C was also observed.  相似文献   

14.
Electron beam evaporation was used to produce Nb/Cu and Cu/Nb bilayers on silicon. The phase sequence and morphology were investigated as a function of annealing temperature in the temperature range between 200 °C and 800 °C, using Auger electron spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction, and transmission electron microscopy. Independently of the sequence of deposition, the phases Nb3Si and Nb5Si3 are the two first niobium phases to be formed as a very thin layer at the Nb---Si interface. However, there is evidence that the reaction between niobium and silicon depends strongly on the presence of copper at the Nb---Si interface. The unusual coexistence of Nb5Si3, NbSi2 and niobium phases was also observed. The formation of the ternary phase Nb5Cu4Si4 was detected after annealing Cu/Nb at 700 °C and Nb/Cu at 800 °C. In the latter case the NbSi2 and Cu3Si+Cu4Si phases were formed through a layered growth process.  相似文献   

15.
锆钛复合氧化物的制备及用作Pt三效催化剂载体的性能   总被引:1,自引:0,他引:1  
用共沉淀法制备了Zr0.5Ti0.5O2复合氧化物, 考察了沉淀时的pH值、温度及焙烧温度对样品织构性能的影响. 分别用BET、XRD、NH3-TPD 对样品的织构、结构性能和表面酸性进行了表征. 将经过不同温度焙烧后的样品作为载体制备成Pt/Zr0.5Ti0.5O2催化剂, 考察了催化剂对C3H8、CO、NO 的催化性能, 并与传统的以La-Al2O3为载体的Pt/La-Al2O3汽车尾气三效催化剂进行了比较. 结果表明: 当沉淀时的pH=11、温度为25℃、焙烧温度为550℃时, 所制得的样品具有较好的织构性能(比表面积为195m2· -1、孔容为0.28mL·g -1)、较强的表面酸性和较宽的酸度分布; 用该样品制备的汽车尾气三效催化剂与传统的以La-Al2O3作载体的Pt/La-Al2O3催化剂相比, 具有更好的HC和CO催化性能和优异的NO转化性能.  相似文献   

16.
Aqueous phase reforming of glycerol over the Pd loaded Ni/Al2O3 catalysts   总被引:1,自引:0,他引:1  
Bifunctional catalysts containing (0.5-1.5 wt%) palladium and 15 wt% of Nickel supported on gamma-Al2O3 were prepared via an impregnation technique and catalysts were characterzed by XRD BET surface area and SEM, respectively. The aqueous phase reforming of glycerol (APR) was conducted over alumina-supported catalysts at different reaction conditions for catalytic activity. Finally, we concluded that the 1.0 wt% Pd 15 wt% Ni/gamma-Al2O3 catalyst evidences higher conversion, hydrogen selectivity, lower alkane selectivity and CO production. This indicate that Pd loaded Ni/gamma-Al2O3 could be a potential catalyst for the APR of glycerol.  相似文献   

17.
A chemical corrosion strategy has been successfully designed to synthesize nanostructured Nb2O5 nanocone and nanorod films on niobium surface in the presence of fluoride ions containing solution. The synthesis of Nb2O5 films via this chemical route is based on a solution-phase epitaxy growth process on niobium substrate. In the growth process, niobium foil is introduced into a reaction solution system, which can act as the reactant to provide niobium source and the substrate to support nanostructured film growth. Nb2O5 films with controllable nanostructures can be selectively obtained on the surface of niobium foil with different manipulations. The possible formation mechanism and influence factors have been investigated. This synthetic method shows that some advantages compared with those available methods, such as e.g., the use of simple equipment, low temperature reaction, low cost, and no need for the use of metal catalyst.  相似文献   

18.
To improve catalytic performance iron based catalyst, the effects of some metal promoters, especially potassium, copper and other transition metal oxides as well as different supports have been reported. A series of Fe/K/Cu catalysts promoted with magnesium and ceria by precipitation method, followed by impregnation method; keeping Cu and K content same. The catalysts were characterized by XRD, N2 physisorption, TPR and TEM techniques. From XRD, the presence of hematite (Fe2O3) phase was detected in all precipitated iron catalysts and CFe2.5 phase in all used catalysts. TPR results showed that addition of Mg facilitated the reduction of Fe2O3 and decrease in reduction temperature. The catalytic performance was investigated in a fixed-bed reactor at 250 degrees C, 2 MPa pressure and H2/CO molar ratio of 2. Concentration of Mg was found to affect the CO conversion and product distribution. It was found that precipitated iron catalyst Fe/Mg/Cu/K with Mg/Fe ratio of 0.1 showed highest conversion (60.6%) and C5(+) selectivity (92.4%) among all catalysts tested.  相似文献   

19.
郑建东  任晓光 《材料导报》2011,25(8):77-80,84
采用反相微乳液-共沉淀法制备了一系列以La、Sr作为镜面阳离子、锰离子作为活性组分的六铝酸盐催化剂La1-xSrxMnAl11O19-δ(x=0.2、0.4、0.5、0.6、0.8)。利用X射线衍射、比表面积分析等分析方法及甲烷燃烧对催化剂的结构和性质进行了考察,主要考察了不同含量的La和Sr离子的掺杂量对催化剂结构及对甲烷催化燃烧活性的影响。结果表明,La和Sr同时作为镜面阳离子,不但可以形成完整的六铝酸盐,而且所制备的催化剂具有较高的催化活性。不同含量的La和Sr离子掺杂对于催化剂的特性有较大影响。当x=0.5时,所制备的催化剂La0.5-Sr0.5MnAl11O19-δ具有较高的催化活性,起燃温度T10%=502℃,至683℃甲烷完全转化。催化剂在低转化率下的宏观动力学实验结果表明,甲烷催化燃烧在La1-xSrxMnAl11O19-δ催化剂上为一级动力学反应,反应速率受催化剂固有性质控制。  相似文献   

20.
Titanium oxide nanotube arrays (TiO2-NTAs) with different diameters and lengths are prepared by anodization of titanium foils in a water/ethylene glycol solution (5:95 V/V) containing 0.3 wt% NH4F. The effects of the diameters, lengths and crystalline phases of the NTAs on the photocatalytic (PC) activity are systematically evaluated. Larger pore diameter results in higher PC activity. The PC activity increases initially and then decreases with lengths for TiO2-NTAs and the optimal length that yields the highest PC activity is observed to be 6.2 microm. The crystalline phase and corresponding PC activity depend on the calcination temperature and their relationship is also investigated. The amorphous-to-anatase and anatase-to-rutile phase transitions initially occur at 300 and 500 degrees C, respectively. The PC activity of TiO2-NTAs initially increases with calcination temperature from 250 to 500 degrees C and then decreases at higher calcination temperature. The enhanced PC activity observed from the samples annealed at 250-450 degrees C is attributed to the better anatase crystalline structure at higher calcination temperature. The highest PC activity with regard to photodecomposition of methyl orange is observed from TiO2-NTAs calcined at 500 degrees C, which coincides with the anatse-to-rutile phase transformation. The synergistic effect of the anatase TiO2-NTAs and rutile barrier layers facilitate interfacial electron transfer consequently enhancing the PC activity. Further elevation of the calcination temperatures to 550 and 600 degrees C exhibits diminished PC activity because the NTs become shorter due to conversion of the bottom of anatase NTs into rutile film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号