首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
多投影仪拼接显示的实现   总被引:6,自引:0,他引:6  
介绍了一种基于PC和普通投影仪实现多屏幕无缝拼接的方法,该方法利用一台摄像机使系统快速、准确的校正。分析了系统的结构和用到的关键技术,包括几何校正、边缘融合、颜色校正。  相似文献   

2.
基于PC集群的多屏无缝拼接技术研究   总被引:1,自引:0,他引:1  
侯洪涛  朱一凡  韦庆  李群 《计算机仿真》2006,23(11):202-205
该文介绍了一种基于PC集群的多屏无缝拼接技术构造大场景显示系统的方法。大面积高分辨率的投影系统在各个领域获得了越来越广泛的应用,但系统构建费用高、维护要求严。在对比分析了传统投影系统的优缺点和目前存在的解决方案后,该方法使用普通PC、数码像机和以太网构建的硬件系统,提出了基于相机的自动几伺校准和基于线性函数的边缘融合方法,消除了投影画面之间的缝隙,并采用Master/Slave结构控制图形的同步渲染,同时支持分布交互式控制。这种方法在满足同等投影显示要求的情况下。将大幅度降低了系统的构建费用和维护要求。  相似文献   

3.
Multi-projector displays today are automatically registered, both geometrically and photometrically, using cameras. Existing registration techniques assume pre-calibrated projectors and cameras that are devoid of imperfections such as lens distortion. In practice, however, these devices are usually imperfect and uncalibrated. Registration of each of these devices is often more challenging than the multi-projector display registration itself. To make tiled projection-based displays accessible to a layman user we should allow the use of uncalibrated inexpensive devices that are prone to imperfections. In this paper, we make two important advances in this direction. First, we present a new geometric registration technique that can achieve geometric alignment {\em in the presence of severe projector lens distortion} using a relatively inexpensive low-resolution camera. This is achieved via a closed-form model that relates the projectors to cameras, in planar multi-projector displays, using rational Bezier patches. This enables us to geometrically calibrate a 3000 x 2500 resolution planar multi-projector display made of 3 x 3 array of nine severely distorted projectors using a low resolution (640 x 480) VGA camera. Second, we present a photometric self-calibration technique for a projector-camera pair. This allows us to photometrically calibrate the same display made of nine projectors using a photometrically uncalibrated camera. To the best of our knowledge, this is the first work that allows geometrically imperfect projectors and photometrically uncalibrated cameras in calibrating multi-projector displays.  相似文献   

4.
5.
Recent work have shown that it is possible to register multiple projectors on non‐planar surfaces using a single uncalibrated camera instead of a calibrated stereo pair when dealing with a special class of non‐planar surfaces, vertically extruded surfaces. However, this requires the camera view to contain the entire display surface. This is often an impossible scenario for large displays, especially common in visualization, edutainment, training and simulation applications. In this paper we present a new method that can achieve an accurate geometric registration even when the field‐of‐view of the uncalibrated camera can cover only a part of the vertically extruded display at a time. We pan and tilt the camera from a single point and employ a multi‐view approach to register the projectors on the display. This allows the method to scale easily both in terms of camera resolution and display size. To the best of our knowledge, our method is the first to achieve a scalable multi‐view geometric registration of large vertically extruded displays with a single uncalibrated camera. This method can also handle a different situation of having multiple similarly oriented cameras in different locations, if the camera focal length is known.  相似文献   

6.
In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.  相似文献   

7.
The arrival of near‐eye displays has challenged the traditional methods that have been used to measure the optical properties of displays. Near‐eye displays typically create virtual images and are designed for the relatively small entrance pupil of the human eye. These two attributes result in optical measurement requirements that are substantially different from traditional flat panel displays. This paper discusses the optical system requirements needed to make absolute radiometric and photometric measurements of near‐eye displays. These guidelines are contrasted with the performance of current optical measurement instruments. An initial study was conducted using traditional and modified instruments and exhibited a significant variance in the results with different near‐eye display designs. The study demonstrated that some traditional optical instruments can yield erroneous results when used to measure near‐eye displays. Generic optical system design concepts were used to interpret the experimental results and helped to identify how current commercial designs could be modified to properly measure near‐eye displays.  相似文献   

8.
In this paper we study the problem of "visual echo" in a full-duplex projector-camera system for tele-collaboration applications. Visual echo is defined as the appearance of projected contents observed by the camera. It can potentially saturate the projected contents, similar to audio echo in telephone conversation. Our approach to visual echo cancelation includes an off-line calibration procedure that records the geometric and photometric transfer between the projector and the camera in a look-up table. During run-time, projected contents in the captured video are identified using the calibration information and suppressed, therefore achieving the goal of canceling visual echo. Our approach can accurately handle full color images under arbitrary reflectance of display surfaces and photometric response of the projector or camera. It is robust to geometric registration errors and quantization effect, therefore particularly effective for high-frequency contents such as texts and hand drawings. We demonstrate the effectiveness of our approach with a variety of real images in a full-duplex projector-camera system.  相似文献   

9.
The viewing direction characterization of reflective displays is more demanding than for emissive displays because defined illumination–detection geometries must be maintained for each viewing direction. In addition, the geometry should mimic the behavior of viewers who tend to exclude the reflection of light sources from a handheld reflective display. Viewing direction data was extracted from measured Bidirectional Reflectance Distribution Functions, showing that a source inclination of 45° sufficiently excludes the specular and haze components of source reflection from the measurement. Applying this so‐called 45/θ geometry to curved flexible displays is not straightforward since viewing direction, display curvature, and alignment each affect the measured reflectance. The viewing direction geometry proposed for convex cylindrical displays uses a ring light to deliver viewing‐direction independent illuminance, and maps the range of viewing directions onto the pixels of an image sensor. The illumination can also be applied to flat displays, allowing direct comparisons of flat and cylindrical display states. First results on e‐paper show good agreement with Bidirectional Reflectance Distribution Function data.  相似文献   

10.
Abstract— Tiled displays provide high resolution and large scale simultaneously. Projectors can project on any available surface. Thus, it is possible to create a large high‐resolution display by simply tiling multiple projectors on any available regular surface. The tremendous advancement in projection technology has made projectors portable and affordable. One can envision displays made of multiple such projectors that can be packed in one's car trunk, carried from one location to another, deployed at each location easily to create a seamless high‐resolution display, and, finally, dismantled in minutes to be taken to the next location — essentially a pack‐and‐go display. Several challenges must be overcome in order to realize such pack‐and‐go displays. These include allowing for imperfect uncalibrated devices, uneven non‐diffused display surfaces, and a layman user via complete automation in deployment that requires no user invention. We described the advances we have made in addressing these challenges for the most common case of planar display surfaces. First, we present a technique to allow imperfect projectors. Next, we present a technique to allow a photometrically uncalibrated camera. Finally, we present a novel distributed architecture that renders critical display capabilities such as self‐calibration, scalability, and reconfigurability without any user intervention. These advances are important milestones towards the development of easy‐to‐use multi‐projector displays that can be deployed anywhere and by anyone.  相似文献   

11.
12.
Spatial distribution functions of atomic densities, SDFs, have been proposed as a natural starting point for analysis of local molecular structure in liquids and solutions. The local structure in these systems is often complex and this is reflected in the fact that SDFs can be difficult to visualize. Among the different methods that can be used to visualize SDFs we discuss 3D isodensity surfaces, cross-sections, and ‘comic book’ animations. We also discuss the possibility of a simultaneous visualization of SDFs and other 3D fields, such as the electron density. These techniques are all intended to emphasize and bring out aspects of SDFs that promote a further understanding of the local molecular structure. OpenGL-based software has been used under X-Windows to implement these techniques, and we argue that high-quality molecular graphics need not be expensive. Data from a molecular dynamics simulation of an equimolar binary mixture of water and acetonitrile have been used to illustrate the discussion.  相似文献   

13.
Two-Part Texture Mappings   总被引:4,自引:0,他引:4  
Most published techniques for mapping two-dimensional texture patterns onto three-dimensional curved surfaces assume that either the texture pattern has been predistorted to compensate for the distortion of the mapping or the curved surfaces are represented parametrically. We address the problem of mapping undistorted planar textures onto arbitrarily represented surfaces. Our mapping technique is done in two parts. First the texture pattern is embedded in 3-space on an intermediate surface. Then the pattern is projected onto the target surface in a way that depends only on the geometry of the target object (not on its parameterization). Both steps have relatively low distortion, so the original texture need not be predistorted. We also discuss interactive techniques that make two-part mapping practical.  相似文献   

14.
Abstract— This work is related to static volumetric crystals which scintillate light when two laser beams are intersected within the crystal. The geometry in this crystal is optimized for linear slices. Most volumetric displays are based on rotational surfaces, which generate the images, while the projected images are sliced in a rotational sweep mode. To date, the majority of 3‐D graphic engines based on static‐volume displays have not been fully developed. To use an advanced 3‐D graphic engine designed for a swept‐volume display (SVD) with a static‐volume display, the display must emulate the operation of a SVD based on a rotational‐slicing approach. The CSpace® 3‐D display has the capability to render 3‐D images using the rotational‐slicing approach. This paper presents the development of a rotational‐slicing approach designed to emulate the operation of a SVD within the image volume of a static‐volume display. The display software has been modified to divide the 3‐D image into 46 slices, each passing through the image center and rotated at a fixed angle from the previous slice. Reconstructed 3‐D images were demonstrated using a rotational‐slicing approach. Suggestions are provided for future implementations that could aid in the elimination of elongations and distortions, which occur within specified slices.  相似文献   

15.
In this paper we present a novel technique for easily calibrating multiple casually aligned projectors on spherical domes using a single uncalibrated camera. Using the prior knowledge of the display surface being a dome, we can estimate the camera intrinsic and extrinsic parameters and the projector to display surface correspondences automatically using a set of images. These images include the image of the dome itself and a projected pattern from each projector. Using these correspondences we can register images from the multiple projectors on the dome. Further, we can register displays which are not entirely visible in a single camera view using multiple pan and tilted views of an uncalibrated camera making our method suitable for displays of different size and resolution. We can register images from any arbitrary viewpoint making it appropriate for a single head‐tracked user in a 3D visualization system. Also, we can use several cartographic mapping techniques to register images in a manner that is appropriate for multi‐user visualization. Domes are known to produce a tremendous sense of immersion and presence in visualization systems. Yet, till date, there exists no easy way to register multiple projectors on a dome to create a high‐resolution realistic visualizations. To the best of our knowledge, this is the first method that can achieve accurate geometric registration of multiple projectors on a dome simply and automatically using a single uncalibrated camera.  相似文献   

16.
Extracting objects from range and radiance images   总被引:6,自引:0,他引:6  
In this paper, we present a pipeline and several key techniques necessary for editing a real scene captured with both cameras and laser range scanners. We develop automatic algorithms to segment the geometry from range images into distinct surfaces, register texture from radiance images with the geometry, and synthesize compact high-quality texture maps. The result is an object-level representation of the scene which can be rendered with modifications to structure via traditional rendering methods. The segmentation algorithm for geometry operates directly on the point cloud from multiple registered 3D range images instead of a reconstructed mesh. It is a top-down algorithm which recursively partitions a point set into two subsets using a pairwise similarity measure. The result is a binary tree with individual surfaces as leaves. Our image registration technique performs a very efficient search to automatically find the camera poses for arbitrary position and orientation relative to the geometry. Thus, we can take photographs from any location without precalibration between the scanner and the camera. The algorithms have been applied to large-scale real data. We demonstrate our ability to edit a captured scene by moving, inserting, and deleting objects  相似文献   

17.
Noise Reduction in Surface Reconstruction from a Given Gradient Field   总被引:5,自引:0,他引:5  
We present a gradient space technique for noise reduction in surfaces reconstructed from a noisy gradient field. We first analyze the error sources in the recovered gradient field of a surface using a three-image photometric stereo method. Based on this analysis, we propose an additive noise model to describe the errors in the surface gradient estimates. We then use a vector space formulation and construct a multiscale orthonormal expansion for gradient fields. Using the sparse representation properties of this expansion, we develop techniques for reducing the gradient field noise by coefficient selection with thresholding. The simulation results indicate that the proposed technique provides significant improvement on the noise levels of both the estimated gradient fields and the reconstructed surfaces under heavy noise levels. Furthermore, the experiments using noisy photometric stereo image triplets of real range data suggest that the additive model remains viable after the nonlinear photometric stereo operation to provide accurate noise removal.  相似文献   

18.
Cluster-based tiled display walls can provide cost-effective and scalable displays with high resolution and a large display area. The software to drive them needs to scale too if arbitrarily large displays are to be built. Chromium is a popular software API used to construct such displays. Chromium transparently renders any OpenGL application to a tiled display by partitioning and sending individual OpenGL primitives to each client per frame. Visualization applications often deal with massive geometric data with millions of primitives. Transmitting them every frame results in huge network requirements that adversely affect the scalability of the system. In this paper, we present Garuda, a client-server-based display wall framework that uses off-the-shelf hardware and a standard network. Garuda is scalable to large tile configurations and massive environments. It can transparently render any application built using the Open Scene Graph (OSG) API to a tiled display without any modification by the user. The Garuda server uses an object-based scene structure represented using a scene graph. The server determines the objects visible to each display tile using a novel adaptive algorithm that culls the scene graph to a hierarchy of frustums. Required parts of the scene graph are transmitted to the clients, which cache them to exploit the interframe redundancy. A multicast-based protocol is used to transmit the geometry to exploit the spatial redundancy present in tiled display systems. A geometry push philosophy from the server helps keep the clients in sync with one another. Neither the server nor a client needs to render the entire scene, making the system suitable for interactive rendering of massive models. Transparent rendering is achieved by intercepting the cull, draw, and swap functions of OSG and replacing them with our own. We demonstrate the performance and scalability of the Garuda system for different configurations of display wall. We also show that the server and network loads grow sublinearly with the increase in the number of tiles, which makes our scheme suitable to construct very large displays.  相似文献   

19.
Various 3D displays have been proposed to show realistic and vivid 3D images. Moreover, 3D displays have been applied in various fields including medicine, entertainment, and advertising. Depending on the application, 3D displays have different pixel structures and sizes. In this paper, we present a 3D-display design method that can be applied regardless of the pixel structure and display sizes. The area of the designable 3D display is suggested by the improved 3D image quality. The manufactured displays are used to verify the proposed method. Furthermore, a light field simulation is performed to confirm the area that was not proven by the manufactured displays. With the proposed 3D image-quality model and 3D image simulation by the light field representation, a general design of 3D displays with various pixel structures can be developed.  相似文献   

20.
A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号