首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MOS LSI process evaluation techniques based on electrical measurements are presented. Important processing parameters, such as gate length, gate oxide thickness, junction depth and channel doping which determine major device characteristics, e.g. threshold voltage and gain factor, are evaluated by electrical measurements, and compared with those measured by optical or in-process monitoring methods. Good agreement between these results indicates the effectiveness of this electrical evaluation technique. According to the analysis, threshold voltage variations across the wafer are primarily due to variations in gate oxide thickness, while anomalous threshold voltage reduction in the short channel region is attributed to MOSFET punch-through.  相似文献   

2.
《Microelectronics Journal》2015,46(10):916-922
In this paper, a simple structure for short channel junction-less double gate (JLDG) MOSFET is proposed. Further expression for surface potential of JLDG has been derived using 2D Poisson׳s equation. Based on the proposed analytical model for surface potential distribution along channel thickness and channel length is derived. The proposed junction-less MOSFET has no p-n junction as the doping of channel is same to that of Source/Drain region. The analytical model is compared with numerical solution using ATLAS device simulator. The result shows the variation of channel potential with channel length, channel thickness, doping concentration and applied gate bias. Further, in this paper the analog performance and RF figure of merits (FOMs) have been investigated. The purpose of this research is to provide a physical explanation for improved analog and RF performance exhibited by the device. In this paper major FOMs such as trans-conductance (gm), output conductance (gd), early voltage (VEA), intrinsic gain (AV), trans-conductance generation factor (TGF), cut-off frequency (fT), trans-conductance frequency product (TFP), gain frequency product (GFP), gain trans-conductance frequency product (GTFP) are analyzed. The simulation result shows that the JLDG exhibit a higher trans-conductance, higher cut-off frequency and lower drain conductance.  相似文献   

3.
辛艳辉  段美霞 《电子学报》2019,47(11):2432-2437
提出了一种非对称双栅应变硅HALO掺杂沟道金属氧化物半导体场效应管结构.该器件前栅和背栅由两种不同功函数的金属构成,沟道为应变硅HALO掺杂沟道,靠近源区为低掺杂区域,靠近漏区为高掺杂区域.采用分区的抛物线电势近似法和通用边界条件求解二维泊松方程,分别求解了前背栅表面势、前背栅表面电场及前背栅阈值电压,建立了双栅器件的表面势、表面电场和阈值电压解析模型.详细讨论了物理参数对解析模型的影响.研究结果表明,该器件能够很好的抑制短沟道效应、热载流子效应和漏致势垒降低效应.模型解析结果与DESSIS仿真结果吻合较好,证明了该模型的正确性.  相似文献   

4.
关于短沟道双栅无结型晶体管的仿真研究   总被引:1,自引:1,他引:0  
We study the characteristics of short channel double-gate(DG) junctionless(JL) FETs by device simulation. OutputⅠ-Ⅴcharacteristic degradations such as an extremely reduced channel length induced subthreshold slope increase and the threshold voltage shift due to variations of body doping and channel length have been systematically analyzed.Distributions of electron concentration,electric field and potential in the body channel region are also analyzed.Comparisons with conventional inversion-mode(IM) FETs,which can demonstrate the advantages of JL FETs,have also been performed.  相似文献   

5.
凹槽栅MOSFET凹槽拐角的作用与影响研究   总被引:5,自引:0,他引:5  
孙自敏  刘理天 《半导体技术》1998,23(5):18-21,39
短沟道效应是小尺寸MOSFET中很重要的物理效应之一,凹槽栅MOSFET对短沟道效应有很强的抑制能力,通过对凹槽栅MOSFET结构,特性的研究,发现凹槽拐角对凹槽栅MOSFET的阈值电压及特性有着显著的影响,凹槽拐角处的阈值电压决定着整个凹槽栅MOSFET的阈值电压,凹槽拐角的曲率半径凹槽MOSFET一个重要的结构参数,通过对凹槽拐角的曲率半径,源漏结深及沟道掺杂浓度进行优化设计,可使凹槽栅MOS  相似文献   

6.
The performances of the junctionless nanowire transistor (JNT) are evaluated under high-performance (HP) ITRS device technical requirements for the 25 nm technology node. The electrical characteristics of the devices are obtained from numerical simulations. The threshold voltage of JNT can be easily adjusted by changing different variable parameters such as fin width, fin thickness, doping concentration, gate oxide thickness and gate work function. The variation of threshold voltage with physical parameters is analyzed. The current drive is controlled by doping concentration and nanowire size. For gate length down to 25 nm, a 30-40% increase in drain current is also reported by using a fin aspect ratio of 2 instead of 1. Additional source and drain implantation can be applied to improve the current drive.  相似文献   

7.
Carbon nanotubes have some unique features and special properties that offer a great potential for nano-electronic devices. In this paper, we have analyzed the effect of chiral vector, metal work function, channel length and High-K dielectric on threshold voltage of CNTFET devices. We have also compared the effect of oxide thickness on gate capacitance and justified the advantage of CNTFET over MOSFET in nanometer regime. Simulation on HSPICE tool shows that high threshold voltage can be achieved at low chiral vector in CNTFET. It is also observed that the temperature has a negligible effect on threshold voltage of CNTFET. After that we have simulated and observed the effect of channel length variation on threshold voltage of CNTFET as well as of MOSFET devices and given a theoretical analysis on it. We found an unusual, yet, favorable characteristics that the threshold voltage increases with decreasing channel length in CNTFET devices in deep nanometer regime especially when the gate length is around 10 nm; which is quite contrary to the well known short channel effects in MOSFET. It is observed that at or below 10 nm channel length the threshold voltage increases rapidly in case of CNTFET device whereas in case of MOSFET device the threshold voltage decreases drastically.  相似文献   

8.
A new method to electrically determine effective MOSFET channel width   总被引:1,自引:0,他引:1  
A new, easy, and accurate electrical measurement method for determining process bias of MOSFET channel width is proposed. This method is based on the linear relationship between the effective width and the channel conductance (or drain current) of a MOSFET operating in the linear region. Constant and sufficiently high gate voltages compared with the threshold voltage of the device are used in the measurement to minimize the error due to the threshold-voltage variation with W in narrow-width devices. The validity of the method is supported by identical results obtained using different gate voltages.  相似文献   

9.
A junctionless transistor (JLT) having high doping concentration of the channel, suffers from the threshold voltage roll-off because of random dopant fluctuation (RDF) effect. RDF has been minimized by using charge plasma based JLT. Charge plasma is same as a workfunction engineering in which work function of the electrode is varied to create hole/electron plasma and induce doping in the intrinsic silicon. N-type doping is induced at the source and drain side due to difference of workfunction of silicon wafer. In this paper, charge plasma based junctionless MOSFET on selective buried oxide (SELBOX-CPJLT) is proposed. This approach is used to reduce the self-heating effect presented in SOI-based devices. The proposed device shows better thermal efficiency as compared to SELBOX-JLT. 2D-Atlas simulation revealed the electrostatics and analog performance of both the devices. The SELBOX-CPJLT exhibits better electrostatic performance as compared to SELBOX-JLT for the same channel length. The analog performance such as intrinsic gain, transconductance generation factor, output conductance and unity gain cut-off frequency are extracted from small signal ac analysis at 1 MHz and compared to SELBOX-JLT. The analysis of the thermal circuit model of SELBOX structure is also performed.  相似文献   

10.
In this article, surface-potential-based analytical threshold voltage model for underlap Fully Depleted Silicon-On-Insulator MOSFET (underlap-SOI) is developed by solving two-dimensional Poisson equation. The gate underlap at source/drain (S/D) has different boundary conditions as compared to channel region under the gate dielectric that divide the whole channel into three regions. It leads us to derive the new surface potential model for three different channel regions, i.e. the region under the gate dielectric and two gate underlap regions at S/D. The effects of underlap length, channel length, body thickness, channel doping concentration, metal gate work function and gate dielectric constant on threshold voltage have been included in our model. The threshold voltage dependence on different device parameters has been studied using analytical model and simulations. The closeness between the simulation results and model results show that the analytical model accurately calculate the threshold voltage values for large range of device parameters.  相似文献   

11.
A comparison of the CNTFET device with the MOSFET device in the nanometer regime is reported.The characteristics of both devices are observed as varying the oxide thickness.Thereafter,we have analyzed the effect of the chiral vector and the temperature on the threshold voltage of the CNTFET device.After simulation on the HSPICE tool,we observed that the high threshold voltage can be achieved at a low chiral vector pair.It is also observed that the effect of temperature on the threshold voltage of the CNTFET is negligibly small.After that,we have analyzed the channel length variation and their impact on the threshold voltage of the CNTFET as well as MOSFET devices.We found an anomalous effect from our simulation result that the threshold voltage increases with decreasing the channel length in CNTFET devices; this is contrary to the well known short channel effect.It is observed that at below the 10 nm channel length,the threshold voltage is increased rapidly in the case of the CNTFET device,whereas in the case of the MOSFET device,the threshold voltage decreases drastically.  相似文献   

12.
To manage the increasing static leakage in low power applications and reducing ON‐OFF current ratio due to scaling limitations, solutions for leakage reduction as well as improving the current drive of the device are sought at the device design and process technology levels. At the device design level, the important low power variables are the threshold voltage, the gate leakage current, the subthreshold leakage current and the device size. Grooved‐gate MOS devices are considered as the most promising candidates for use in submicron and deep submicron regions as they can overcome the short‐channel effects effectively. By varying the corner angle and adjusting other structural parameters such as junction depth, channel doping concentration, negative junction depth and oxide thickness, leakage current in nMOS devices can be minimised. In this article, 90, 80, 70, 60 and 50?nm devices are simulated using Devedit and Deckbuild module of Silvaco device simulator. The simulated results show that by changing the structural parameters, ON‐OFF current ratio is improved and maintained constant even in the deep submicron region. This study can be helpful for low power applications as the static leakage is drastically reduced, as well as applicable to high speed devices as the ON current is maintained at a constant value. The results are compared with those of corresponding conventional planar devices to bring out the achievements of this study.  相似文献   

13.
We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects &band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel.These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n-p-n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability.  相似文献   

14.
提出了一种积累型槽栅超势垒二极管,该二极管采用N型积累型MOSFET,通过MOSFET的体效应作用降低二极管势垒。当外加很小的正向电压时,在N+区下方以及栅氧化层和N-区界面处形成电子积累的薄层,形成电子电流,进一步降低二极管正向压降;随着外加电压增大,P+区、N-外延区和N+衬底构成的PIN二极管开启,提供大电流。反向阻断时,MOSFET截止,PN结快速耗尽,利用反偏PN结来承担反向耐压。N型积累型MOSFET沟道长度由N+区和N外延区间的N-区长度决定。仿真结果表明,在相同外延层厚度和浓度下,该结构器件的开启电压约为0.23 V,远低于普通PIN二极管的开启电压,较肖特基二极管的开启电压降低约30%,泄漏电流比肖特基二极管小近50倍。  相似文献   

15.
为了抑制深亚微米SOI MOSFET的短沟道效应,并提高电流驱动能力,提出了异质栅单Halo SOI MOSFET器件结构,其栅极由具有不同功函数的两种材料拼接而成,并在沟道源端一侧引入Halo技术.采用分区的抛物线电势近似法和通用边界条件求解二维Poisson方程,为新结构器件建立了全耗尽条件下的表面势及阈值电压二维解析模型.对新结构器件与常规SOI MOSFET性能进行了对比研究.结果表明,新结构器件能有效抑制阈值电压漂移、热载流子效应和漏致势垒降低效应,并显著提高载流子通过沟道的输运速度.解析模型与器件数值模拟软件MEDICI所得结果高度吻合.  相似文献   

16.
In the proposed work analytical modeling of single halo triple material surrounding gate (SH-TMSG) MOSFET is developed. The threshold voltage and subthreshold current has been derived using parabolic approximation method and the simulation results are analyzed. The threshold voltage roll off is reduced and it denotes the deterioration of short channel effects. The results of the analytical model are delineated and compared with MEDICI simulation results and it is well corroborated.  相似文献   

17.
We point out for the first time that floating-body effects cause the reduction of the saturation drive current in partially depleted (PD) Sol MOSFETs. It is demonstrated that when the channel concentration of the SOI MOSFETs is set higher in order to suppress the increase of the off current caused by floating-body effects, the drive current decreases due to the large body effect. In the conventional SOI structure where the source-drain junction is in contact with the buried oxide, the 0.18 μm floating PD SOI MOSFET suffers around 17% decrease in the drive current under the same threshold voltage (Vth) in comparison with body-fixed one. However, floating ID SOI MOSFETs show smaller Vth-roll-off. Further considering the short channel effect down to the minimum gate length of 0.16 μm, the current decrease becomes 6%. Also, we propose a floating PD SOI MOSFET with shallow source-drain junction (SSD) structure to suppress the floating-body effects. By using the SSD structure, we confirmed an increase in the drive current  相似文献   

18.
Based on the two-dimensional Poisson equation, the surface potential distribution along the surface channel of a MOSFET has been analytically derived by assuming negligible source and drain junction depths and its minimum potential is then used to determine the threshold voltage. The existence of a minimum surface potential point along the channel of a MOSFET under an applied drain bias is consistent with the numerical results of the two-dimensional analysis. The effects of finite source and drain junction depths have been elegantly included by modifying the depletion capacitance under the gate and the resulted threshold voltage model has been compared to the results of the two-dimensional numerical analysis. It has been shown that excellent agreement between these results has been obtained for wide ranges of substrate doping, gate oxide thickness, channel length (< 1 μm), substrate bias, and drain voltage. Moreover, comparisons between the developed model and the existing experimental data have been made and good agreement has been obtained. The major advantages of the developed model are that no iterations and no adjustable fitting parameters are required. Therefore, this simple and accurate threshold voltage model will become a useful design tool for ultra short channel MOSFETs in future VLSI implementation.  相似文献   

19.
在前期对双掺杂多晶Si栅(DDPG)LDMOSFET的电场、阈值电压、电容等特性所作分析的基础上,仍然采用双掺杂多晶Si栅结构,以低掺杂漏/源MOS(LDDMOS)为基础,重点研究了DDPG-LDDMOSFET的截止频率特性.通过MEDICI软件,模拟了栅长、栅氧化层厚度、源漏区结深、衬底掺杂浓度以及温度等关键参数对器件截止频率的影响,并与相同条件下P型单掺杂多晶Si栅(p-SDPG)MOSFET的频率特性进行了比较.仿真结果发现,在栅长90 nm、栅氧厚度2 nm,栅极P,n掺杂浓度均为5×1019cm-3条件下,截止频率由78.74 GHz提高到106.92 GHz,幅度高达35.8%.此结构很好地改善了MOSFET的频率性能,得出的结论对于结构的设计制作和性能优化具有一定的指导作用,在射频领域有很好的应用前景.  相似文献   

20.
A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor (Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed (as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential (eQFP) decreases as the channel potential starts to decrease, and there are hiphops in the channel eQFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I-V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号