首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A stack of Al2O3/SiNx dual layer was applied for the back side surface passivation of p-type multi-crystalline silicon solar cells, with laser-opened line metal contacts, forming a local aluminum back surface field (local Al-BSF) structure. A slight amount of Al2O3, wrapping around to the front side of the wafer during the thermal atomic layer deposition process, was found to have a negative influence on cell performance. The different process flow was found to lead to a different cell performance, because of the Al2O3 wrapping around the front surface. The best cell performance, with an absolute efficiency gain of about 0.6% compared with the normal full Al-BSF structure solar cell, was achieved when the Al2O3 layer was deposited after the front surface of the wafer had been covered by a SiNx layer. We discuss the possible reasons for this phenomenon, and propose three explanations as the Ag paste, being hindered from firing through the front passivation layer, degraded the SiNx passivation effect and the Al2O3 induced an inversion effect on the front surface. Characterization methods like internal quantum efficiency and contact resistance scanning were used to assist our understanding of the underlying mechanisms.  相似文献   

2.
A thin SiOyNx film was inserted below a conventional SiNx antireflection coating used in c‐Si solar cells in order to improve the surface passivation and the solar cell's resistance to potential‐induced degradation (PID). The effect of varying the flow ratio of the N2O and SiH4 precursors and the deposition temperature for the SiOyNx thin film upon material properties were systematically investigated. An excellent surface passivation was obtained on FZ p‐type polished silicon wafers, with the best results obtained with a SiOyNx film deposited at a very low temperature of 130 °C and with an optical refractive index of 1.8. In the SiOyNx/SiNx stack structure, a SiOyNx film with ~6 nm thickness is sufficient to provide excellent surface passivation with an effective surface recombination velocity Seff < 2 cm/s. Furthermore, we applied the optimized SiOyNx/SiNx stack on multicrystalline Si solar cells as a surface passivation and antireflection coating, resulting in a 0.5% absolute average conversion efficiency gain compared with that of reference cells with conventional SiNx coating. Moreover, the cells with the SiOyNx/SiNx stack layers show a significant increase in their resistance to PID. Nearly zero degradation in shunt resistance was obtained after 24 h in a PID test, while a single SiNx‐coated silicon solar cell showed almost 50% degradation after 24 h. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
本文采用化学水浴法沉积CuxS薄膜,通过改变Cu元素比例研究其对碲化镉电池效率的影响。研究表明化学水浴法沉积的CuxS是非晶的,采用适当退火条件可以使其晶化,随着退火温度的提高,薄膜变得致密且结晶明显。CuxS薄膜厚度对电池性能有很大的影响,结果表明,随着CuxS薄膜厚度增加,电池性能先增加后减少。薄膜厚度为75nm时,CdS/CdTe电池性能最佳,达到了最高转化效率(η)为12.19%,填充因子(FF)为68.82%,开路电压(Voc)为820mV。  相似文献   

4.
两种不同的钝化层结构被应用到势垒层厚度为12 nm的AlGa/GaN 高电子迁移率场效应晶体管中。首先采用等离子增强原子层沉积(PEALD)技术生长5 nm的AlN薄膜,然后再覆盖50 nm的等离子增强化学气相淀积(PECVD)生长的SiNx。相比于传统的SiNx钝化,AlN钝化层的插入更有效地抑制了电流崩塌效应,同时获得了小的亚阈值斜率(SS)。AlN钝化层的插入增大了器件的射频跨导从而获得了较高的截止频率。另外,通过变温直流特性测试发现,AlN/SiNx钝化的器件在高温时饱和电流和最大跨导的衰退相对于仅采用SiNx钝化的器件都要小,表明AlN钝化层的插入改善了器件的高温稳定性。  相似文献   

5.
采用反应磁控溅射法在室温条件下制备了a-GaAs1-xNx 薄膜。实验测定了薄膜厚度、氮含量、载流子浓度和光学透过率及并研究了其随溅射压的变化。系统研究了溅射压对所制备薄膜的光学带隙、折射率和色散参数的影响。所制备的薄膜为直接带隙材料,利用Cauchy和Wemple模型能够很好地拟合所制备薄膜的折射率色散曲线。  相似文献   

6.
Many solar cells incorporating SiNx films as a rear surface passivation scheme have not reached the same high level of cell performance as solar cells incorporating high‐temperature‐grown silicon dioxide films as a rear surface passivation. In this paper, it is shown by direct comparison of solar cells incorporating the two rear surface passivation schemes, that the performance loss is mainly due to a lower short‐circuit current while the open‐circuit voltage is equally high. With a solar cell test structure that features a separation of the rear metal contacts from the passivating SiNx films, the loss in short‐circuit current can be reduced drastically. Besides a lower short‐ circuit current, dark I–V curves of SiNx rear surface passivated solar cells exhibit distinct shoulders. The results are explained by parasitic shunting of the induced floating junction (FJ) underneath the SiNx films with the rear metal contacts. The floating junction is caused by the high density of fixed positive charges in the SiNx films. Other two‐dimensional effects arising from the injection level dependent SRV of the Si/SiNx interfaces are discussed as well, but, are found to be of minor importance. Pinholes in the SiNx films and optical effects due to a different internal rear surface reflectance can be excluded as a major cause for the performance loss of the SiNx rear surface passivated cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Simulation studies are carried out on the large signal and noise properties of heterojunction (HT) AlxGa1-xAs/GaAs double drift region (DDR) IMPATT devices at V-band (60 GHz). The dependence of Al mole fraction on the aforementioned properties of the device has been investigated. A full simulation software package has been indigenously developed for this purpose. The large signal simulation is based on a non-sinusoidal voltage excitation model. Three mole fractions of Al and two complementary HT DDR structures for each mole fraction i.e., six DDR structures are considered in this study. The purpose is to discover the most suitable structure and corresponding mole fraction at which high power, high efficiency and low noise are obtained from the device. The noise spectral density and noise measure of all six HT DDR structures are obtained from a noise model and simulation method. Similar studies are carried out on homojunction (HM) DDR GaAs IMPATTs at 60 GHz to compare their RF properties with those of HT DDR devices. The results show that the HT DDR device based on N-AlxGa1-xAs/p-GaAs with 30% mole fraction of Al is the best one so far as large signal power output, DC to RF conversion efficiency and noise level are concerned.  相似文献   

8.
Spectral response of solar cells determines the output performance of the devices. In this work, a 20.0% efficient silicon (Si) nano/microstructures (N/M‐Strus) based solar cell with a standard solar wafer size of 156 × 156 mm2 (pseudo‐square) has been successfully fabricated, by employing the simultaneous stack SiO2/SiNx passivation for the front N/M‐Strus based n+‐emitter and the rear surface. The key to success lies in the excellent broadband spectral responses combining the improved short‐wavelength response of the stack SiO2/SiNx passivated Si N/M‐Strus based n+‐emitter with the extraordinary long‐wavelength response of the stack SiO2/SiNx passivated rear reflector. Benefiting from the broadband spectral response, the highest open‐circuit voltage (Voc) and short‐circuit current density (Jsc) reach up to 0.653 V and 39.0 mA cm?2, respectively. This high‐performance screen‐printed Si N/M‐Strus based solar cell has shown a very promising way to the commercial mass production of the Si based high‐efficient solar cells.  相似文献   

9.
郑文礼  李廷会 《半导体学报》2012,33(11):112001-5
随着硅浓度的增大,计算的拉曼谱结果表明,Ge-Si模式和Si-Si模式向高波数移动,而Ge-Ge模式向低波数移动,这种拉曼谱的变化强烈的依赖于合金微结构的变化。它的模式频率的线性变化依赖于Ge/Si的力学常熟的变化。这种现象可以用来鉴别合金中Si含量的浓度。可以通过拉曼散射表征这种复杂的微结构变化。  相似文献   

10.
Growth of (Cd1−xZnx)1+yTe(CZT) single crystals is tried by a modified Bridgman method using a reservoir chamber containing Cd and Zn metals with a fixed mole ratio. The aim of this method is to obtain the single crystals with controlled deviation y from stoichiometry and homogeneous target composition x. A suitable growth condition was examined experimentally and the effectiveness of this method for controlling the deviation y from stoichiometry and the composition x is confirmed.  相似文献   

11.
减反射特性是进一步提高N型太阳电池能量转换效率的重要因素之一。研究采用Al2O3/SiNx叠层优化了N型太阳电池的减反射特性,并通过理论模拟和实验测量系统地探讨了叠层中SiNx厚度对表面反射性能的影响。研究证实在Al2O3层上增加一层SiNx,可以有效地优化表面减反射性质,从而提高N型太阳电池的光伏性质。  相似文献   

12.
The optical properties of as-prepared and rapid thermal oxidized (RTO) heteroepitaxial Si1−xyGexCy alloys grown on Si substrate have been characterized using spectroscopic ellipsometry. The critical points E1, E0′, E2 band gaps were determined by line shape fitting in the second derivative spectra of the pseudo-dielectric functions. For as-prepared films, the E1 gap increases with C concentration and a linear dependence on C content was observed. However, the E2 gap decreases as the C concentration increases. For the RTO samples, the amplitude of E2 transition reduces rapidly and the E1 transition shifts to a lower energy. The reduction in the amplitude of E2 transitions is due to the presence of oxide layer. A high Ge content layer and the low C content in the RTO films account for the E1 shift to lower energy and the increase of the refractive indices.  相似文献   

13.
我们利用脉冲激光沉积的方法制备了一系列(In0.95-xSnxFe0.05)2O3 (x=0~0.09)薄膜,并在其中发现了室温铁磁性。X射线衍射结果表明锡与铁离子已掺入氧化铟晶格。随着锡的掺入,样品内的载流子浓度得到了很大的提高,但相应的铁磁性却几乎没有变化。我们认为氧空位相关的束缚磁极化子模型能够跟好的解释我们的铁掺杂氧化铟薄膜中的铁磁耦合的机制,而载流子传导的RKKY相互作用则不适用于这一系统。  相似文献   

14.
通过微波辅助法制备出高活性H1-xSr2Nb3-xMoxO10光催化材料,制备过程和时间均被大大缩短。采用X射线粉末衍射(XRD)、扫描电镜(SEM)、紫外-可见吸收吸收光谱(UV-Vis DRS)等表征其材料性能。考察了催化材料在40W汞灯辐照下催化降解甲基橙的催化性能。实验结果表明,MoO3的掺入量为15%(摩尔分数)时,材料的光催化性能最优。  相似文献   

15.
Surface passivation by SiN x films is indispensable for high-power operation of AlGaN/GaN heterojunction field-effect transistors (HFETs) since it can effectively suppress collapse in the drain current. So far, the plasma-enhanced chemical vapor deposition technique has been used for the SiN x deposition; however, possible damage induced by the plasma processing may affect direct-current performance or reliability. In this paper, we present subsequent deposition of SiN x ultrathin films on AlGaN/GaN in the same metalorganic chemical vapor deposition reactor. It is experimentally found that this in situ SiN x passivation doubles the sheet carrier density at the AlGaN/GaN interface from that of the unpassivated sample. High-resolution cross-sectional transmission electron microscopy reveals that in situ SiN x is crystallized on the AlGaN layer as island-like structures via the Stranski-Krastanov growth mode. The lattice constants of in situ SiN x are estimated to be a ≈ 3.2 Å and c ≈ 2.4 Å, which are quite different from those of well-known Si3N4 crystal structures. First-principles calculation predicts that the crystal structure of in situ SiN x is the defect wurtzite structure, which well explains the experimental results. The passivation technique using crystalline SiN x films would be promising for high-power and high-frequency applications of AlGaN/GaN HFETs.  相似文献   

16.
The electronic band structures and band gap bowing parameters of InxGa1-xN are studied by the firstprinciples method based on the density functional theory. Calculations by employing both the Heyd-ScuseriaErnzerh of hybrid functional(HSE06) and the Perdew-Burke-Ernzerhof(PBE) one are performed. We found that the theoretical band gap bowing parameter is dependent significantly on the calculation method, especially on the exchange-correlation functional employed in the DFT calculations. The band gap of InxGa1-xN alloy decreases considerably when the In constituent x increases. It is the interactions of s–s and p–p orbitals between anions and cations that play significant roles in formatting the band gaps bowing. In general, the HSE06 hybrid functional could provide a good alternative to the PBE functional in calculating the band gap bowing parameters.  相似文献   

17.
Laser doping offers a promising method to define selective emitters for solar cells. Its main advantage is the localised nature of the laser beam, which allows melting of the surface area without heating the bulk. The ability to perform this process over a dielectric film offers further benefits, such as the possibility of creating self‐aligned metallisation patterns simultaneously with the selective emitter formation. However, laser induced defects, contaminations and discontinuities in the selective emitter can reduce solar cell performance. In this work the influence of different dielectric films on defect formation is investigated. It was found that a thin oxide beneath the SiNx improves the implied open circuit voltage of the solar cells for a wide range of laser output powers. Fewer defects were observed when using this SiO2/SiNx stack compared to the standard single SiNx anti‐reflection coating layer. It was also found that the recrystallised silicon layer grows epitaxially according the substrate orientation. No dislocation or stacking faults were observed in deeper areas using transmission electron microscopy, although some defects were observed near the surface. Electron beam induced current images revealed discontinuities in junctions formed with high laser powers. We conclude that micro‐cracks create these discontinuities, which can potentially induce shunts. Finally, laser doped solar cells with a standard SiNx and with a double SiO2/SiNx stack layer as anti‐reflection coating were compared. An efficiency of 18.4% on a large area commercial grade p‐type CZ substrate was achieved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Atomic layer deposition (ALD) of thin Al2O3 (≤10 nm) films is used to improve the rear surface passivation of large‐area screen‐printed p‐type Si passivated emitter and rear cells (PERC). A blister‐free stack of Al2O3/SiOx/SiNx is developed, leading to an improved back reflection and a rear recombination current (J0,rear) of 92 ± 6 fA/cm2. The Al2O3/SiOx/SiNx stack is blister‐free if a 700°C anneal in N2 is performed after the Al2O3 deposition and prior to the SiOx/SiNx capping. A clear relationship between blistering density and lower open‐circuit voltage (VOC) due to increased rear contacting area is shown. In case of the blister‐free Al2O3/SiOx/SiNx rear surface passivation stack, an average cell efficiency of 19.0% is reached and independently confirmed by FhG‐ISE CalLab. Compared with SiOx/SiNx‐passivated PERC, there is an obvious gain in VOC and short‐circuit current (JSC) of 5 mV and 0.2 mA/cm2, respectively, thanks to improved rear surface passivation and rear internal reflection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Hot‐wire chemical vapor deposition (HWCVD) is a promising technique for very fast deposition of high quality thin films. We developed processing conditions for device‐ quality silicon nitride (a‐SiNx:H) anti‐reflection coating (ARC) at high deposition rates of 3 nm/s. The HWCVD SiNx layers were deposited on multicrystalline silicon (mc‐Si) solar cells provided by IMEC and ECN Solar Energy. Reference cells were provided with optimized parallel plate PECVD SiNx and microwave PECVD SiNx respectively. The application of HWCVD SiNx on IMEC mc‐Si solar cells led to effective passivation, evidenced by a Voc of 606 mV and consistent IQE curves. For further optimization, series were made with HW SiNx (with different x) on mc‐Si solar cells from ECN Solar Energy. The best cell efficiencies were obtained for samples with a N/Si ratio of 1·2 and a high mass density of >2·9 g/cm3. The best solar cells reached an efficiency of 15·7%, which is similar to the best reference cell, made from neighboring wafers, with microwave PECVD SiNx. The IQE measurements and high Voc values for these cells with HW SiNx demonstrate good bulk passivation. PC1D simulations confirm the excellent bulk‐ and surface‐passivation for HW SiNx coatings. Interesting is the significantly higher blue response for the cells with HWCVD SiNx when compared to the PECVD SiNx reference cells. This difference in blue response is caused by lower light absorption of the HWCVD layers (compared to microwave CVD; ECN) and better surface passivation (compared to parallel plate PECVD; IMEC). The application of HW SiNx as a passivating antireflection layer on mc‐Si solar cells leads to efficiencies comparable to those with optimized PECVD SiNx coatings, although HWCVD is performed at a much higher deposition rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Interaction of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics has been extensively studied. Metal-oxide-semiconductor (MOS) device formed with SiO2 gate dielectric and HfxTayN metal gate shows satisfactory thermal stability. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis results show that the diffusion depths of Hf and Ta are less significant in SiO2 gate dielectric than that in HfOxNy. Compared to HfOxNy gate dielectric, SiO2 shows better electrical properties, such as leakage current, hysteresis, interface trap density and stress-induced flat-band voltage shift. With an increase in post metallization annealing (PMA) temperature, the electrical characteristics of the MOS device with SiO2 gate dielectric remain almost unchanged, indicating its superior thermal and electrical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号