首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
Crack propagation experiments were conducted on 6061-T6 Al-alloy, for various overload ratios (1·75, 2·00, 2·15, 2·25 and 2·5). On the basis of these experiments a power law is developed to predict the delay period. The delay period after the application of a single overload increases as the magnitude of overload increases. Crack growth decreases after the application of an overload cycle and after a certain number of cycles it tends to attain its CAL crack propagation rate.  相似文献   

2.
The influence of stress ratio R and stress intensity range (ΔK) on fatigue crack growth experiments were determined for 6063-T6 aluminium alloy and crack growth data were analysed with different formulae for the effective stress intensity range ratio U. The data covered R values from 0 to 0·3. A good correlation was obtained from da/dN and ΔKeff using the equation for U as a function of R.  相似文献   

3.
Crack closure experiments using a COD gauge were performed on 6061-T6 Al-alloy, for various stress ratios. Experimental results show that for a given stress ratio, R, the crack length increases up to 1 mm after which it is stabilized. On the basis of the experimental results a model for effective stress range ratio U, which was found to be a function of stress ratio R, was developed. This model was fitted to existing constant amplitude crack propagation data for the 6061-T6 Al-alloy.  相似文献   

4.
Crack closure experiments were performed on 6061-T6 and 6063-T6 Al alloys for Lo-Hi and Hi-Lo programmed loadings. In these experiments each block of overload was continued to propagate up to 2 mm crack length. In the Lo-Hi load sequences the closure load increases but the value of U remains the same. The crack growth rate accelerated due to larger value of ΔK. The values of U stabilized in about 10 cycles for each block. In Hi-Lo load sequences, retardation takes place. The closure load increases and becomes stabilized in 10 cycles. It remains constant for a number of cycles and reaches its CAL closure value.  相似文献   

5.
Crack propagation experiments were performed on 6063-T6 Al-alloy for various load ranges and stress ratios. Experimental results show that for a constant load range, the life of specimens decreased as stress ratio increased. At constant maximum load, the life of the specimen increased as the load ratio increased. The crack growth data were analysed in terms of ΔKeff as a function of stress ratio R. The data covered R values from 0 to 0·5 and a good relationship was obtained for Keff/K = 0·55 + 0·12 R2. A crack growth rate equation was developed.  相似文献   

6.
Crack closure experiments were performed on 6063-T6 Al-alloy, using a COD gauge for various load ranges (Δp) and stress ratios, R. On the basis of the experimental results a model for effective stress intensity range ratio U was developed. This model was found to be a function of the stress ratio, R, and was fitted to existing constant amplitude crack propagation data for 6063-T6 Al-alloy. The crack closure load stabilized after 1 mm initial crack growth.  相似文献   

7.
Experiments on single tensile overload applied at different crack length were performed on 6063-T6 Al alloy. Experimental results show that increasing the magnitude of overload increases crack growth retardation. It was also found that crack growth retardation decreases when overload is applied at larger crack length. A model for finding the number of delay cycles by considering overload ratio and instant of overload is developed.  相似文献   

8.
The dependence of crack growth rate on various crack tip parameters was studied. Experiments were performed on thin sheets of 6063-T6 Al-alloy having a central notch, to find crack tip opening displacement, total strain range, plastic strain range, crack opening stress and crack growth rate. Crack tip opening displacement and crack opening stress were measured, using a surface measurement technique, with small crack opening displacement gauges. The theoretical predictions of crack tip opening displacement compare fairly well with the experimental values. It is found that crack propagation rate vs total strain range-plastic strain range gives a straight-line fit on a log-log graph and, for positive stress ratios, the fatigue crack growth rates are found to be independent of R.

Experimental results show that the crack opening stress is not affected by the position of the gauge when it is mounted behind and near the crack tip.

The effect of mechanical properties and loading on crack growth were also studied. The specimens were fatigue cracked to a predetermined length and some specimens were annealed and again loaded cyclically. The application of cyclic loads to annealed specimens caused significant increase in crack propagation rates in comparison with the specimens having no heat-treatment. The load-displacement record was found to stabilize in about 10 cycles; the crack then extended slowly as a fatigue crack. Crack propagation rates for different values of R for annealed and work-hardened material were plotted against a crack tip parameter, ΔK*, based on notional crack lengths. Since the results of da/dN vs ΔK* for both states of material (as-received and annealed) seem to lie on the same straight line on a log-log graph, the study provides a hope that the results for a material tested in any state (annealed or work-hardened) for positive values of R (0·0≤R≤0·3) will lie on this line, thus eliminating fatigue tests on the same material under different work-hardening conditions for different values of R. Models for da/dN have been developed using various crack tip parameters.  相似文献   


9.
The influence of temperature at various R ratio values on the fatigue crack propagation response of a ferritic spheroidal graphitic cast iron has been studied. It has been established that the influence of R ratio on ΔKth is strongly dependent upon the test temperature. At elevated temperatures the influence of R ratio is significantly less than that at ambient temperature. At low to intermediate R ratio values temperature initially decreased, then, with increasing temperature, increased the ΔKth levels, causing a minimum in ΔKth to occur at 250–300°C. At high R ratio, however, ΔKth exhibited a small but consistent increase with temperature. The influence of temperature on the ΔKth at various R ratio values could be adequately explained in terms of crack closure. Much intergranular failure was observed on the fatigue fracture surfaces at ambient temperature, whereas at elevated temperatures there was little evidence of this particular failure.  相似文献   

10.
Root-mean-square averaged (RMS-averaged) stress-intensity factors were calculated for internal half-elliptical surface cracks in cylindrical vessels using a weight function method. The weight function was derived based on an approximate crack surface displacement representation. Stress-intensity factors for longitudinal half-elliptical inner surface cracks subjected to polynomial stress distribution have been presented and compared favorably with the existing numerical solutions. Superposition of the polynomial stress-intensity factors has provided an extremely efficient solution to the thermal shock crack problems. The crack geometries analyzed were Ri/R0 = 10/11 and 4/5, a/c = 0·3333 and 0·8, the ratio of crack depth to wall thickness ranged from 0 to 0·8. The results, as well as the proposed method, offer a very powerful and economic way for the safety assessment of pressure vessels subjected to complex and varying load conditions.  相似文献   

11.
Fatigue crack propagation experiments were conducted on D16AT Al alloy to study the effect of load ratio on mixed mode fatigue crack propagation. The experiments were conducted on a Compact Tension Shear specimen at different crack angles in both mode I and mixed mode conditions. At each angle tests were conducted at three different load ratios of 0·1, 0·25 and 0·5. It has been observed that the crack growth rate increases with decrease in load ratio. The fracture surfaces were analysed under the scanning electron microscope. The effect of load ratio was studied in terms of striation spacing.  相似文献   

12.
This paper presents the results of an extensive study carried out to examine the effects of prior overloading over the entire fracture transition regime for 50-mm thick A533B steel. The main variables examined are temperature, crack orientation with respect to the rolling direction, level of prior overload, the initial crack length, and the statistical variation of prior overload effects. It is found that the effect of prior overload on fracture toughness at lower temperatures is dependent on orientation, so that in the L-T orientation for short and medium cracks (0·2 and 0·5 a/W) there is a benefit throughout the transition regime of 50-mm thick A533B steel. In the T-L orientation no benefit is obtained for temperatures greater than the initiation of tearing temperatures. Above these temperatures the prior overload sequence lowers the fracture toughness. For L-T orientation long cracks (a/W = 0·7) it is found for temperatures lower than −140°C that prior overload apparently increases the toughness. At higher temperatures there is a loss of toughness even though failure is cleavage dominated up to −80°C.

On the lower shelf at −170°C in the L-T orientation the fracture toughness variability after preloading is found (based on a sample of 14 specimens) to exhibit a bimodal distribution. This distribution is similar to that exhibited by non-preloaded material.  相似文献   


13.
An experimental investigation was conducted in an open cycle desiccant cooling system (DCS) operating on the ventilation mode in the laboratory site [M. Yıldırım, An experimental investigation on heat and mass transfer in a desiccant cooling system, PhD thesis, Gaziantep University, Turkey (2002). [1]]. Although the operation of DCS is presumably affected by the design of primary components of rotary regenerator (RR) and desiccant wheel (DW) the methodology used in the analysis of experimental data is presented in this paper to set a different approach for the performance evaluation of similar systems.

The rotational speeds of RR and DW (NRR and NDW), air mass flow rate (ma) in process and regeneration lines, and the regeneration temperature (TR) were defined as operation parameters. Meanwhile coefficient of performance (COP) and cooling capacity (CC) of the system were called as the performance parameters. The system operation with a variety of experimental conditions resulted in an extensive data set covering the ranges of NRR, NDW, ma and TR as 5 rpm ≤ NRR ≤ 20 rpm, 0.1 rpm ≤ NDW ≤ 0.4 rpm, 0.05 kg/s ≤ ma ≤ 0.139 kg/s and 60 °C ≤ TR ≤ 90 °C, respectively. The interactive influence of the operation parameters was determined through the realization of the psychrometric cycle in deviation from an ideal cycle. A dimensional analysis based on a trial and error procedure was followed to determine the functional relationship of COP and CC.

The proposed correlations between COP and CC and the introduced system performance parameter (PP) were determined to be a sole function of ma independent of NRR, NDW and TR in their covered ranges.  相似文献   


14.
Crack growth data of 6063-T6 sheet material were analysed with different formulas for ΔKeff as a function of stress ratio R. The data covered R values from 0·1 to 0·5. A good correlation was obtained for dadN and ΔKeff using the Schijve6 equation for U.  相似文献   

15.
An attempt has been made to develop a simple, reliable and cost-effective device for measuring the dynamic crack propagation velocity in a nuclear pressure vessel steel (SA516 gr. 70). The experimental method is described and a simple digital approach is proposed. The experimentally determined dynamic crack velocity has been utilized to obtain elastic dynamic stress intensity factors by INSAMCR (a two-dimensional dynamic finite element code which is a modified version of SAMCR developed by Dr Schwartz at the University of Maryland). A relationship between instantaneous crack tip velocities and dynamic stress intensity factors for pressure vessel steels is estimated using dynamic crack propagation velocities determined by a proposed measuring device. The relationship between the dynamic stress intensity factor and time history and the dynamic arrest toughness for each test are obtained using the generation mode dynamic finite element analysis. A function ƒ(å) = 1·356 − 2·672å + 6·494å2 − 4·539å3 + 1·461å4 is suggested which may be useful to predict the relationship between the dynamic fracture toughness (K(å)) and the dynamic crack arrest toughness (KIa) for SA516 gr. 70 steel (say K(å) = KIa ƒ(å) where å is the dynamic crack propagation velocity).  相似文献   

16.
This paper attempts to describe the effect of carbon content on the fatigue threshold characteristics ΔKth in various heat treated conditions. Essentially it has been shown that a tempering treatment increased ΔKth while increasing the carbon content of steels from 0·13% to 0·8% significantly decreased the ΔKth value by over 100%. At intermediate fatigue crack growth rates all the data show a linear relationship with ΔK level.

In terms of yield strength σy, the threshold stress intensity level could be given by the expression: ΔKth = 8·74 − 3·42 × 10−3y).

At near threshold fatigue crack growth levels significant amounts of isolated intergranular failure were observed in the 400°C tempered condition. In the other heat treated microstructures only a flat trans-granular ductile striated failure mode was evident. A maxima in the amount of intergranular facets occurred at ΔK values approaching 15 to 20 MPa√m. It has been shown the existence of intergranular failure resulted from environmentally induced fracture (through the diffusion of hydrogen) that occurred within the crack tip enclave.  相似文献   


17.
From instrumented drop-weight tests, the nil ductility transition temperature (TNDT), and a conservative estimate of dynamic fracture toughness (KId), at TNDT for normalised and tempered 9Cr---1Mo steel, are determined to be −25°C and 70 MPa√m, respectively. The latter value agrees well with that determined from pre-cracked Charpy tests. The KIdYdYd is the dynamic yield stress) ratio at TNDT is estimated to be 0·076 √m, in agreement with previous estimates. The uncertainties in crack profile measurement and effect of microstructural variation in the heat affected zone on fracture loads are also discussed.  相似文献   

18.
The Langmuir adsorption isotherm of the over-potentially deposited hydrogen (OPD H) for the cathodic H2 evolution reaction (HER) at the Pt–Rh (Pt:Rh; 80:20 wt%) alloy/0.5 MH2SO4 aqueous electrolyte interface has been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift (0°−φ90°) for the optimum intermediate frequency can be linearly related to that of the fractional surface coverage (1θ0) of the OPD H for the cathodic HER at the interface. The phase-shift profile (−φ vs. E) for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm (θ vs. E) of the OPD H for the cathodic HER at the interface. At the Pt–Rh alloy electrode interface, the equilibrium constant (K) and the standard free energy (ΔGads) of the OPD H are 2.2×10−4 and 20.9 kJ/mol, respectively. At the steady state, the behaviors of the cyclic voltammogram and the Langmuir adsorption isotherm of the OPD H for the cathodic HER at the Pt–Rh alloy electrode interface are similar to those of the pure Pt electrode interfaces. At the steady state, the effect of Rh on the OPD H for the cathodic HER can be neglected at the Pt–Rh (Pt:Rh; 80:20 wt%) alloy/0.5 MH2SO4 aqueous electrolyte interface.  相似文献   

19.
This paper summarises the results of experimental creep tests of type 304 stainless steel tube subjected to internal pressure at 650°C. The equipment used was especially developed for these tests.

The tubes without notches were tested at pressures of 9·32 and 7·36 MPa. Test results indicate that the rupture time of the tubes without notches is in good agreement with that of uniaxial specimens when the maximum stress is taken as the rupture criterion. The tubes containing axial and circumferential surface notches were tested at a pressure of 7·36 MPa. Test results indicate that the ductile fracture theory is applicable to the life prediction in the case of axial notches.

An electric potential method was very useful for monitoring the creep crack growth from the notch root. The relationship between the creep crack growth rate and the fracture mechanics parameter, σnet or K1, was investigated.  相似文献   


20.
A composite braze, consisting of Ag–Cu–Ti braze alloy and particulate Al2TiO5 filler, was used to produce metal/braze/metal and metal/braze/YSZ joints to seal and interconnect metal-supported SOFC membranes. The addition of Al2TiO5 to the braze alloy lowers the coefficient of thermal expansion (CTE) of the resulting composite sufficiently so as to produce joints in which the YSZ does not crack due to CTE mismatch. Optimization of the reactive element (Ti) loading is discussed with regard to its effect on electrolyte conductivity. Electronic conductivity, sealing ability, and strength of the braze alloy remain acceptable after complete oxidation at 700 °C in air. Joints were also tested in air/fuel dual atmosphere environment at 700 °C. After this exposure, the joint remains hermetically sealed, and no significant degradation of the joint was observed. This is in contrast to a free-standing foil of the braze alloy, which failed upon dual atmosphere exposure. The composite braze material was used to seal a metal-supported thin-film YSZ cell. The sealed cell was thermally cycled 30 times very rapidly without any deterioration of the open circuit voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号