首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王雷 《金属热处理》2013,38(3):13-16
研究了35Cr3NiMoA高强钢高温形变热处理后的组织和硬度.结果表明,35Cr3NiMoA钢在15% ~ 35%形变度范围内高温形变热处理时,硬度随形变量的增大而增大.组织基本保持马氏体位相,存在少量的碳化物和铁素体,变形量相近条件下,温度越高,针片状马氏体组织越细小;形变温度相同条件下,形变量越大,针片状马氏体组织越细小.形变热处理后,再经回火处理,硬度明显下降,35Cr3NiMoA钢高温形变的最佳工艺方案为形变温度1100℃,形变量20%,回火温度280℃.  相似文献   

2.
这种形变热处理工艺多用在高强度线材的生产上。工艺过程为:首先将钢丝加热奥氏体化,之后淬入500~520℃的热浴(过去多用铅浴,故称淬铅)中等温保持,在等温过程中得到细片状索氏体组织。该组织具有较高的强度及良好的塑性,为下一步的形变强化做好了组织方面的准备。具有索氏体组织的钢丝再经冷拉拔。冷拉拔形变量约90%左右。形变时珠光体中的渗碳体产生塑性形变,其取向与拔丝方向平行。这样便构成了一种类似复合材料的强化组织。  相似文献   

3.
采用工艺实验研究2A12铝合金形变热处理工艺中时效温度和室温塑性变形量对材料性能的影响。结果表明:经固溶/淬火+8%室温塑性变形+(140±5)℃,15 h,及空冷人工时效工艺处理后,2A12铝合金获得良好的强塑性配合;在2A12铝合金热挤压管材旋压工艺中采用形变热处理技术,可以使旋压工件材料的综合性能得到明显提高。  相似文献   

4.
通过对U76CrRE钢轨热处理时的冷却工艺进行优化,消除了钢轨脱碳层中的异常上贝氏体组织。对异常组织产生的原因进行了分析,提出了U76CrRE钢轨的最佳热处理工艺。在分段冷却过程中,U76CrRE钢轨的强冷介入温度在568 ℃。钢轨内部相变潜热与表面急冷层容易在钢轨脱碳层内形成等温层,是异常上贝氏体组织产生的温度条件;同时,钢轨近表面晶界处严重脱碳为上贝氏体组织形成提供了化学成分条件。U76CrRE钢轨的最佳热处理工艺为淬火开冷温度780 ℃,淬火时间120 s(20 s+100 s),淬火终冷温度控制在410 ℃,返温温度控制在540 ℃。  相似文献   

5.
研究了7075铝合金棒料的形变热处理工艺条件(形变量和时效制度)变化对其组织和性能的影响。结果表明,固溶处理后进行冷变形,随着形变量的增加,合金的硬度随之增加,当冷形变量达到40%左右时合金的硬度最高,随后随形变量增加合金的硬度略有下降;在相同冷变形量条件下,在120℃时效16 h制品的硬度最高;通过金相组织观察发现,形变热处理后7075铝合金棒料的晶粒细化,且可观察到明显的析出相。综合考虑,7075铝合金棒料形变热处理的最佳工艺制度为固溶(470℃20 min)淬火+变形量40%+时效(120℃16 h)。  相似文献   

6.
对于铝合金,按照淬火——冷加工硬化——时效的方式最详细地研究了低温形变热处理。近几年研究的结果证明,为了强化铝合金,可以采用高温形变热处理【2】及低温形变热处理:在低温形变热处理过程中可采用100~200℃温度(在此温度下可加速固溶体分解过程)的塑性变形【1】。  相似文献   

7.
研究了加热温度与冷却速率对热处理直拉单晶硅少子寿命和间隙铁含量的影响。结果表明,直拉单晶硅在300~1050℃加热40 min,以50℃/s的速率快冷至室温会提高硅片的间隙铁含量,降低硅片的少子寿命;加热温度越高,快冷后硅片的间隙铁含量越高,少子寿命越低;直拉单晶硅片在900~1050℃加热,当以50℃/s的速率快冷至室温,90%以上的铁以沉淀形式存在,其余的铁以间隙态存在。直拉单晶硅片分别经800、900和1000℃加热40 min后在0.017~50℃/s的速率范围冷却,硅片间隙铁含量随冷却速率增加而增加,少子寿命随冷却速率增加而降低,加热温度越高,间隙铁含量上升的幅度越大,而少子寿命下降的幅度越大。  相似文献   

8.
研究了不同固溶温度及冷却方式对BT25钛合金锻件组织与性能的影响。结果表明:同一固溶温度下,空冷的比炉冷的显微组织细小。固溶温度在相变温度以上,空冷的比炉冷的室温强度高,但塑性指标及冲击韧性变化不大。固溶温度在相变温度以下,同一固溶温度下空冷的比炉冷的室温强度稍高、断面收缩率和冲击韧性要高的多、延伸率变化不大,但屈服强度略有下降。高温强度随着冷却速度的提高而呈现略有提高趋势,塑性指标变化不明显。选用固溶温度为相变点以下30~40℃,保温2h空冷+550℃,6h空冷热处理制度,可以保证合金强度和塑性的最佳配合。  相似文献   

9.
围绕不同形变温度与连铸态6082铝合金的组织以及时效后的合金硬度之间的关系,通过偏光显微组织分析、硬度测试对连铸态6082铝合金形变热处理进行了研究.结果表明,形变热处理可以有效改善连铸态6082铝合金的组织和性能.一定压下量的形变热处理试样经时效后的硬度要明显高于直接在相同温度固溶后时效的硬度.变形温度对其组织的影响不大,压下量对组织的影响较为明显,压下量越大,其组织的条带越窄.550℃高温变形后在170℃保温箱中时效8h,可使硬度有大幅度的提高.  相似文献   

10.
采用粉末冶金工艺制备了WCp/B4Cp/6063Al复合材料,通过SEM和XRD对复合材料的显微组织进行了表征,研究了预形变热处理工艺对复合材料力学性能的影响。结果表明,当形变量超过某临界值时,复合材料经过预形变热处理可以实现很好的强化效果;本实验中当挤压比达到或超过15∶1,热处理温度为520℃时,复合材料经过预变形热处理获得了最佳的力学性能。断口表面形貌分析表明,预形变热处理后基体合金的强化是复合材料整体力学性能提高的根源。  相似文献   

11.
通过正交试验方法,研究了高温形变热处理工艺对X22CrMoV12-1马氏体不锈钢锻件生产的可行性。结果表明:回火温度是影响不锈钢锻件强度和韧性的最显著因素,锻造温度为次要因素,变形量为最不显著因素;选定1075℃的锻造温度、40%的变形量,665℃的回火温度时,锻件能够很好地满足塑性标准要求,并可实现良好的强韧性匹配;高温形变热处理工艺锻后省去固溶处理工序,直接淬火后进行回火,可缩短产品的生产周期,降低成本。  相似文献   

12.
研究了形变热处理对TA15钛合金组织与力学性能的影响.在α β两相进行形变热处理使组织中的条状初生α相碎化.对水冷的试样进行930℃/1h/空冷 915℃/1h/空冷 530℃/6h/空冷的处理,抗拉强度明显提高,组织中的条状初生α相发生球化.在β相进行形变热处理使强度略有降低,魏氏组织中的α层片增厚.  相似文献   

13.
研究镁合金AZ61在SIMA法处理过程中压缩形变条件下,冷或热形变方式、形变率以及相应的等温热处理参数等对组织的影响规律。在同等热处理条件下,进行冷或热形变方式两套实验方案比较研究。结果表明,SI-MA法中,镁合金AZ61预变形采用热变形或冷变形均可得到细小非枝晶组织,虽演变机理不同,但在储存能趋于饱和之前,增加镁合金试样的热形变率或冷形变率,可以使热处理后非枝晶化效果和质量提高,但必须选择适当的等温热处理温度和保温时间。  相似文献   

14.
研究了2A16铝合金挤压棒材形变热处理工艺条件(形变量和时效制度)变化对其组织和性能的影响。结果表明,固溶处理后随着形变量的增加,合金硬度随之增加,当形变量达到50%左右时其硬度最高,随后随形变量增加其硬度略有下降;通过金相观察发现,形变热处理后合金晶粒细化且可观察到明显的析出相。综合考虑,2A16铝合金形变热处理的最佳工艺制度为固溶处理(530℃2h)+冷变形(20%)+时效(170℃12h)。  相似文献   

15.
为了确保含017%C、1.93%Cr、0.97%Mo、0.43%Si和0.68%Mn(质量分数)的ZG15Cr2Mo1钢的室温和高温力学性能满足要求,对其进行了不同温度和冷却方式的正火及不同温度的回火工艺试验。经不同工艺热处理的钢的室温和高温力学性能确定的ZG15Cr2Mo1钢的最佳热处理工艺为:920~970℃保温8~12h空冷正火,随后720~760℃回火8~12h。  相似文献   

16.
从合金成分、形变热处理工艺等方面研究引线框架用Cu-Fe-P合金的软化温度,以提高合金的耐热性能.结果表明,通过改进形变热处理工艺,Cu-2.35Fe-0.03P-0.1Zn(wt%)合金的软化温度从480 ℃提高到495 ℃左右;而在形变热处理等其它条件不变的情况下,在合金中加入Mg、Cr及稀土(RE)等元素,合金的软化温度提高到525 ℃;在加入Mg、Cr、RE等元素,同时采用改进后的形变热处理工艺,合金的软化温度可提高到540 ℃左右.  相似文献   

17.
快速热处理对铸造多晶硅性能的影响   总被引:1,自引:1,他引:0  
采用微波光电导衰减法(μ-PCD)、扫描电镜等测试技术,研究了快速热处理(RTP)对铸造多晶硅片表面缺陷形貌以及少子寿命特性的影响。结果表明:铸造多晶硅片经低中温(750、850和950℃)RTP时,硅片的少子寿命明显降低,其中在950℃、保温30s时硅片的少子寿命下降幅度最大;当硅片经高温1050℃RTP时,硅片的少子寿命急剧增大,最大幅度达到初始寿命值的4.3倍。另一方面,保温时间对硅片少子寿命也有很大影响,一定RTP温度下,随着保温时间的增加,硅片的少子寿命逐渐增大。  相似文献   

18.
研究了热处理温度和冷却方式对初始组织为等轴组织的TC11钛合金显微组织及力学性能的影响.结果表明,对于TC11钛合金,在空冷条件下,随热处理温度的升高,等轴α相含量逐渐减少;当热处理温度超过980 ℃,合金开始发生组织形态的改变,由初始的等轴态转变为α β双态组织,随温度的继续升高,等轴组织完全转变成片层状组织;热处理温度在980 ℃以上时,随冷却速度的增加,β转变组织的片层厚度逐渐减小,冷却速度较快时(水冷),形成淬火马氏体.拉伸试验研究表明,热处理温度为980~1020 ℃,空冷(或油冷)条件下,得到的组织具有较好的高温综合力学性能,其中热处理温度在980~1000 ℃之间得到的组织由于等轴α相含量约为50%,具有最佳的力学性能.  相似文献   

19.
采用不同热处理工艺(热处理温度、热处理时间和冷却方式)对含镁铝新型建筑结构材料进行了热处理,并进行了电化学腐蚀试验。结果表明:在热处理时间4h时,随热处理温度从600℃升高至800℃或在热处理温度675℃时,热处理时间从2h延长至5h,材料的耐腐蚀性能均先提高后下降。在热处理时间4h时,675℃热处理比600℃热处理的腐蚀电位正移116mV、腐蚀电流密度减小56%;在热处理温度675℃时,4h热处理比2h热处理的腐蚀电位正移81mV、腐蚀电流密度减小41%;在热处理675℃×4h时,炉冷比水冷的腐蚀电位正移157mV、腐蚀电流密度减小50%。  相似文献   

20.
围绕不同形变温度与连铸态6082铝合金的组织以及时效后的合金硬度之间的关系,通过偏光显微组织分析、硬度测试对连铸态6082铝合金高温形变热处理进行了分析。结果表明,高温形变热处理可以有效改善连铸态6082铝合金的组织性能,与室温变形相比,经高温压缩变形后的组织不均匀性得到改善,但变形温度对其组织的影响不大。545℃高温变形后在170℃保温箱中时效8h,硬度得以大幅度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号